Strong-Field Tests of Gravity with the Double Pulsar

Author(s):  
M. Kramer
2007 ◽  
Vol 3 (S248) ◽  
pp. 164-169 ◽  
Author(s):  
A. R. Taylor

AbstractThe SKA is a global project to plan and construct the next-generation international radio telescope operating at metre to cm wavelengths. More than 50 institutes in 19 countries are involved in its development. The SKA will be an interferometric array with a collecting area of up to one million square metres and maximum baseline of at least 3000 km. The SKA reference design includes field-of-view expansion technology that will allow instantaneous imaging of up to several tens of degrees. The SKA is being designed to address fundamental questions in cosmology, physics and astronomy. The key science goals range from the epoch or re-ionization, dark energy, the formation and evolution of galaxies and large-scale structure, the origin and evolution of cosmic magnetism, strong-field tests of gravity and gravity wave detection, the cradle of life, and the search for extraterrestrial intelligence. The sensitivity, field-of-view and angular resolution of the SKA will make possible a program to create a multi-epoch data base of wide-angle relative astrometry to a few μas precision for ~10,000,000 radio sources with S > 10 μJy.


2006 ◽  
Vol 15 (1-2) ◽  
pp. 34-42 ◽  
Author(s):  
M. Kramer ◽  
I.H. Stairs ◽  
R.N. Manchester ◽  
M.A. McLaughlin ◽  
A.G. Lyne ◽  
...  

Author(s):  
Banafsheh Shiralilou ◽  
Tanja Hinderer ◽  
Samaya Nissanke ◽  
Nestor Ortiz ◽  
Helvi Witek

Abstract Gravitational waves emitted by black hole binary inspiral and mergers enable unprecedented strong-field tests of gravity, requiring accurate theoretical modelling of the expected signals in extensions of General Relativity. In this paper we model the gravitational wave emission of inspiralling binaries in scalar Gauss-Bonnet gravity theories. Going beyond the weak-coupling approximation, we derive the gravitational waveform to relative first post-Newtonian order beyond the quadrupole approximation and calculate new contributions from nonlinear curvature terms. We also compute the scalar waveform to relative 0.5PN order beyond the leading -0.5PN order terms. We quantify the effect of these terms and provide ready-to-implement gravitational wave and scalar waveforms as well as the Fourier domain phase for quasi-circular binaries. We also perform a parameter space study, which indicates that the values of black hole scalar charges play a crucial role in the detectability of deviation from General Relativity. We also compare the scalar waveforms to numerical relativity simulations to assess the impact of the relativistic corrections to the scalar radiation. Our results provide important foundations for future precision tests of gravity.


2016 ◽  
Vol 25 (14) ◽  
pp. 1630029 ◽  
Author(s):  
Michael Kramer

Radio-loud neutron stars known as pulsars allow a wide range of experimental tests for fundamental physics, ranging from the study of super-dense matter to tests of General Relativity (GR) and its alternatives. As a result, pulsars provide strong-field tests of gravity, they allow for the direct detection of gravitational waves in a “pulsar timing array” (PTA), and they promise the future study of black hole properties. This contribution gives an overview of the on-going experiments and recent results.


2004 ◽  
Vol 48 (11-12) ◽  
pp. 993-1002 ◽  
Author(s):  
M. Kramer ◽  
D.C. Backer ◽  
J.M. Cordes ◽  
T.J.W. Lazio ◽  
B.W. Stappers ◽  
...  

2012 ◽  
Vol 8 (S291) ◽  
pp. 337-341 ◽  
Author(s):  
A. R. Taylor

AbstractThe Square Kilometre Array (SKA) is a global project to design and construct the next-generation international radio telescope operating at metre to cm wavelengths. The SKA will be an interferometric array with a collecting area of up to one million square metres and maximum baseline of at least 3000 km, and is designed to address fundamental questions in cosmology, physics and astronomy. The key science goals range from the epoch of re-ionization, dark energy, the formation and evolution of galaxies and large-scale structure, the origin and evolution of cosmic magnetism, strong-field tests of gravity and detection of gravity waves.The SKA project is now entering a final design for an SKA Observatory to begin to be built in the latter half of this decade that will include facilities in South Africa and Western Australia. The SKA design relies on advances in several technologies that will be prototyped over the next few years, and demonstrated for astronomical observations on SKA precursor telescopes. Scientific operations of the first 10% scale phase of the SKA is targeted for 2020.


2017 ◽  
Vol 13 (S337) ◽  
pp. 142-145
Author(s):  
V. Venkatraman Krishnan ◽  
W. van Straten ◽  
P. A. Rosado ◽  
M. Bailes ◽  
E. F. Keane ◽  
...  

AbstractThe initial results from timing observations of PSR J1141–6545, a relativistic pulsar-white dwarf binary system, are presented. Predictions from the timing baseline hint at the most stringent test of gravity by an asymmetric binary yet. The timing precision has been hindered by the dramatic variations of the pulse profile due to geodetic precession, a pulsar glitch and red timing noise. Methods to overcome such timing irregularities are briefly presented along with preliminary results from the test of the General Theory of Relativity (GR) from this pulsar.


Sign in / Sign up

Export Citation Format

Share Document