Information Fusion using the Kalman Filter based on Karhunen-Loève Decomposition

Author(s):  
Zhiming Lu ◽  
Dongxiao Zhang ◽  
Yan Chen
2013 ◽  
Vol 389 ◽  
pp. 758-764 ◽  
Author(s):  
Qi Wang ◽  
Dong Li ◽  
Zi Jia Zhang ◽  
Chang Song Yang

To improve the navigation precision of autonomous underwater vehicles, a terrain-aided strapdown inertial navigation based on Improved Unscented Kalman Filter (IUKF) is proposed in this paper. The characteristics of strapdown inertial navigation system and terrain-aided navigation system are described in this paper, and improved UKF method is applied to the information fusion. Simulation experiments of novel integrated navigation system proposed in the paper were carried out comparing to the traditional Kalman filtering methods. The experiment results suggest that the IUKF method is able to greatly improve the long-time navigation precision, relative to the traditional information fusion method.


2020 ◽  
Vol 15 (1) ◽  
pp. 82-91
Author(s):  
Fen Hang ◽  
Xiangyang Hao

When quadrotor unmanned aerial vehicle (UAV) is performing various tasks, even a small angular error will affect the evaluation of the entire motion trajectory. The multiple photoelectric sensor information fusion technology and the ARM microprocessor platform are used to form an attitude reference system for UAV. First, the hardware design of the small quadrotor UAV attitude reference system based on an ARM is introduced. The design framework and information acquisition module are expounded. In terms of the software of the system, the photoelectric sensor is used to receive different kinds of information, and the dynamic loading component is adopted as the solution to the interface diversification problems. Based on the attitude reference system, the collected information needs to be fused. The Kalman filtering is taken as the research object. Combined with the multiple photoelectric sensor information fusion technology, the Kalman filtering method is improved in the data preprocessing, and the low-pass filtering is added. Therefore, the abnormal data is filtered, and the estimated values are converged in a short time. Then, the data fusion is performed by the joint Kalman filter, least-squares fusion, and extended Kalman filter, respectively. During the experimental process, the system is proved to have good robustness, that is, in the case of individual sensor failure, the attitude acquisition section still obtains accurate attitude information of the UAV. The attitude reference system of UAV is realized. With the help of multi-sensor/information fusion technology, the attitude of the UAV is better handled, and its flight stability is improved.


2013 ◽  
Vol 303-306 ◽  
pp. 975-978
Author(s):  
Hong Yu Zheng ◽  
Chang Fu Zong

The power battery state of charge (SOC) in electric vehicles is not easy to measure accurately or apply a sensor but the expense is increased. However the variable of SOC is great importance to control of electric vehicles. A power battery model is built by the Partnership for a New Generation of Vehicles (PNGV) model to estimate the state of SOC. In order to make a high accurate estimate for SOC value, an information fusion algorithm based on unscented kalman filter (UKF) is introduced to design an observer. The test results show that the observer based information fusion and UKF are effective and accuracy, so it is may apply it the electric vehicle control and observation.


Sign in / Sign up

Export Citation Format

Share Document