Transiting Planets: Follow the FLAMES...

Author(s):  
C. Melo ◽  
N. C. Santos ◽  
F. Pont ◽  
M. Mayor ◽  
S. Udry ◽  
...  
Keyword(s):  
2020 ◽  
Vol 500 (4) ◽  
pp. 5088-5097
Author(s):  
Benjamin F Cooke ◽  
Don Pollacco ◽  
David R Anderson ◽  
Daniel Bayliss ◽  
François Bouchy ◽  
...  

ABSTRACT We set out to explore how best to mitigate the number of period aliases for a transiting Transiting Exoplanet Survey Satellite (TESS) system with two identified transits separated by a large time period on the order of years. We simulate a realistic population of doubly transiting planets based on the observing strategy of the TESS primary and extended missions. We next simulate additional observations using photometry (NGTS) and spectroscopy (HARPS and CORALIE) and assess its impact on the period aliases of systems with two TESS transits. We find that TESS will detect around 400 exoplanets that exhibit one transit in each of the primary and extended missions. Based on the temporal coverage, each of these systems will have an average of 38 period aliases. We find that, assuming a combination of NGTS and CORALIE over observing campaigns spanning 50 d, we can find the true alias, and thus solve the period, for up to 207 of these systems with even more being solved if the observing campaigns are extended or we upgrade to HARPS over CORALIE.


2010 ◽  
Vol 6 (S273) ◽  
pp. 89-95 ◽  
Author(s):  
A. F. Lanza

AbstractThe photospheric spot activity of some of the stars with transiting planets discovered by the CoRoT space experiment is reviewed. Their out-of-transit light modulations are fitted by a spot model previously tested with the total solar irradiance variations. This approach allows us to study the longitude distribution of the spotted area and its variations versus time during the five months of a typical CoRoT time series. The migration of the spots in longitude provides a lower limit for the surface differential rotation, while the variation of the total spotted area can be used to search for short-term cycles akin the solar Rieger cycles. The possible impact of a close-in giant planet on stellar activity is also discussed.


2018 ◽  
Vol 615 ◽  
pp. A145 ◽  
Author(s):  
M. Mol Lous ◽  
E. Weenk ◽  
M. A. Kenworthy ◽  
K. Zwintz ◽  
R. Kuschnig

Context. Transiting exoplanets provide an opportunity for the characterization of their atmospheres, and finding the brightest star in the sky with a transiting planet enables high signal-to-noise ratio observations. The Kepler satellite has detected over 365 multiple transiting exoplanet systems, a large fraction of which have nearly coplanar orbits. If one planet is seen to transit the star, then it is likely that other planets in the system will transit the star too. The bright (V = 3.86) star β Pictoris is a nearby young star with a debris disk and gas giant exoplanet, β Pictoris b, in a multi-decade orbit around it. Both the planet’s orbit and disk are almost edge-on to our line of sight. Aims. We carry out a search for any transiting planets in the β Pictoris system with orbits of less than 30 days that are coplanar with the planet β Pictoris b. Methods. We search for a planetary transit using data from the BRITE-Constellation nanosatellite BRITE-Heweliusz, analyzing the photometry using the Box-Fitting Least Squares Algorithm (BLS). The sensitivity of the method is verified by injection of artificial planetary transit signals using the Bad-Ass Transit Model cAlculatioN (BATMAN) code. Results. No planet was found in the BRITE-Constellation data set. We rule out planets larger than 0.6 RJ for periods of less than 5 days, larger than 0.75 RJ for periods of less than 10 days, and larger than 1.05 RJ for periods of less than 20 days.


2010 ◽  
Vol 6 (S276) ◽  
pp. 163-166 ◽  
Author(s):  
Luca Fossati ◽  
Carole A. Haswell ◽  
Cynthia S. Froning

AbstractWASP-12 is a 2 Gyr old solar type star, hosting WASP-12b, one of the most irradiated transiting planets currently known. We observed WASP-12 in the UV with the Cosmic Origins Spectrograph (COS) on HST. The light curves we obtained in the three covered UV wavelength ranges, all of which contain many photospheric absorption lines, imply effective radii of 2.69±0.24 RJ, 2.18±0.18 RJ, and 2.66±0.22 RJ, suggesting that the planet is surrounded by an absorbing cloud which overfills the Roche lobe. We clearly detected enhanced transit depths at the wavelengths of the MgII h&k resonance lines. Spectropolarimetric analysis of the host star was also performed. We found no global magnetic field, but there were hints of atmospheric pollution, which might be connected to the very unusual activity of the host star.


2012 ◽  
Vol 8 (S293) ◽  
pp. 146-151
Author(s):  
Dong Lai ◽  
Francois Foucart

AbstractThe Kepler satellite has discovered a number of transiting planets around close binary stars. These circumbinary systems have highly aligned planetary and binary orbits. In this paper, we explore how the mutual inclination between the planetary and binary orbits may reflect the physical conditions of the assembly of protoplanetary discs and the interaction between protostellar binaries and circumbinary discs. Given the turbulent nature of star-forming molecular clouds, it is possible that the infalling gas onto the outer region of a circumbinary disc rotates around a different axis compared to the central protostellar binary. Thus, the newly assembled circumbinary disc can be misaligned with respect to the binary. However, the gravitational torque from the binary produces warp and twist in the disc, and the back-reaction torque tends to align the disc and the binary orbital plane. We present a new, analytic calculation of this alignment torque, and show that the binary-disc inclination angle can be reduced appreciably after the binary accretes a few percent of its mass from the disc. Since mass accretion onto the proto-binary is very likely to occur, our calculation suggests that in the absence of other disturbances, circumbinary discs and planets around close (sub-AU) stellar binaries are highly aligned with the binary orbits, while discs and planets around wide binaries can be misaligned.


2022 ◽  
Vol 163 (2) ◽  
pp. 53
Author(s):  
Nicholas Saunders ◽  
Samuel K. Grunblatt ◽  
Daniel Huber ◽  
Karen A. Collins ◽  
Eric L. N. Jensen ◽  
...  

Abstract While the population of confirmed exoplanets continues to grow, the sample of confirmed transiting planets around evolved stars is still limited. We present the discovery and confirmation of a hot Jupiter orbiting TOI-2184 (TIC 176956893), a massive evolved subgiant (M ⋆ = 1.53 ± 0.12 M ⊙, R ⋆ = 2.90 ± 0.14 R ⊙) in the Transiting Exoplanet Survey Satellite (TESS) Southern Continuous Viewing Zone. The planet was flagged as a false positive by the TESS Quick-Look Pipeline due to periodic systematics introducing a spurious depth difference between even and odd transits. Using a new pipeline to remove background scattered light in TESS Full Frame Image data, we combine space-based TESS photometry, ground-based photometry, and ground-based radial velocity measurements to report a planet radius of R p = 1.017 ± 0.051 R J and mass of M p = 0.65 ± 0.16 M J . For a planet so close to its star, the mass and radius of TOI-2184b are unusually well matched to those of Jupiter. We find that the radius of TOI-2184b is smaller than theoretically predicted based on its mass and incident flux, providing a valuable new constraint on the timescale of post-main-sequence planet inflation. The discovery of TOI-2184b demonstrates the feasibility of detecting planets around faint (TESS magnitude > 12) post-main-sequence stars and suggests that many more similar systems are waiting to be detected in the TESS FFIs, whose confirmation may elucidate the final stages of planetary system evolution.


2015 ◽  
Vol 806 (2) ◽  
pp. 215 ◽  
Author(s):  
Daniel Foreman-Mackey ◽  
Benjamin T. Montet ◽  
David W. Hogg ◽  
Timothy D. Morton ◽  
Dun Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document