On State Estimation Approaches for Uncertain Dynamical Systems with Quadratic Nonlinearity: Theory and Computer Simulations

Author(s):  
Tatiana F. Filippova ◽  
Elena V. Berezina
Author(s):  
T. F. Filippova ◽  
A. B. Kurzhanski ◽  
K. Sugimoto ◽  
I. Vályi

2006 ◽  
Vol 11 (2) ◽  
pp. 137-148 ◽  
Author(s):  
A. Benabdallah ◽  
M. A. Hammami

In this paper, we address the problem of output feedback stabilization for a class of uncertain dynamical systems. An asymptotically stabilizing controller is proposed under the assumption that the nominal system is absolutely stable.


Entropy ◽  
2018 ◽  
Vol 21 (1) ◽  
pp. 7 ◽  
Author(s):  
Christoph Kawan

In the context of state estimation under communication constraints, several notions of dynamical entropy play a fundamental role, among them: topological entropy and restoration entropy. In this paper, we present a theorem that demonstrates that for most dynamical systems, restoration entropy strictly exceeds topological entropy. This implies that robust estimation policies in general require a higher rate of data transmission than non-robust ones. The proof of our theorem is quite short, but uses sophisticated tools from the theory of smooth dynamical systems.


1989 ◽  
Vol 111 (3) ◽  
pp. 359-363 ◽  
Author(s):  
Y. H. Chen

We consider a class of large-scale uncertain dynamical systems under decentralized controllers. The system is composed of N interconnected subsystems which possess uncertainty. Moreover, there are uncertainties in the interconnections. If the subsystems are under sufficient decentralized controllers, the large-scale system is practically stable. As certain controllers fail, study on the conditions for total stability of partial stability to be preserved is made. It can be shown that the stability is only related to bound of uncertainty and the structure of the large-scale system. Moreover, the conditions can be utilized to determine the importance of some controllers for stability.


Sign in / Sign up

Export Citation Format

Share Document