Analysis of Four Wheeled Flexible Joint Robotic Arms with Application on Optimal Motion Design

Author(s):  
M. H. Korayem ◽  
H. N. Rahimi ◽  
A. Nikoobin
2020 ◽  
Vol 4 (2) ◽  
pp. 48-55
Author(s):  
A. S. Jamaludin ◽  
M. N. M. Razali ◽  
N. Jasman ◽  
A. N. A. Ghafar ◽  
M. A. Hadi

The gripper is the most important part in an industrial robot. It is related with the environment around the robot. Today, the industrial robot grippers have to be tuned and custom made for each application by engineers, by searching to get the desired repeatability and behaviour. Vacuum suction is one of the grippers in Watch Case Press Production (WCPP) and a mechanism to improve the efficiency of the manufacturing procedure. Pick and place are the important process for the annealing process. Thus, by implementing vacuum suction gripper, the process of pick and place can be improved. The purpose of vacuum gripper other than design vacuum suction mechanism is to compare the effectiveness of vacuum suction gripper with the conventional pick and place gripper. Vacuum suction gripper is a mechanism to transport part and which later sequencing, eliminating and reducing the activities required to complete the process. Throughout this study, the process pick and place became more effective, the impact on the production of annealing process is faster. The vacuum suction gripper can pick all part at the production which will lower the loss of the productivity. In conclusion, vacuum suction gripper reduces the cycle time about 20%. Vacuum suction gripper can help lower the cycle time of a machine and allow more frequent process in order to increase the production flexibility.


ROBOT ◽  
2011 ◽  
Vol 33 (4) ◽  
pp. 449-454 ◽  
Author(s):  
Chuangqiang GUO ◽  
Fenglei NI ◽  
Jingting SUN ◽  
Hong LIU

1993 ◽  
Author(s):  
T. A. Nartker
Keyword(s):  

Author(s):  
Tran Anh Quynh ◽  
Pham Duy Hien ◽  
Le Quang Du ◽  
Le Hoang Long ◽  
Nguyen Thi Ngoc Tran ◽  
...  

AbstractRobotic surgery offers three-dimensional visualization and precision of movement that could be of great value to gastrointestinal surgeons. There were many previous reports on robotic technology in performing Soave colonic resection and pull-through for Hirschsprung’s disease in children. This study described the follow-up of the Robotic-assisted Soave procedure for Hirschsprung’s disease in children. Robotic-assisted endorectal pull-through was performed using three robotic arms and an additional 5-mm trocar. The ganglionic and aganglionic segments were initially identified by seromuscular biopsies. The rest of the procedure was carried out according to the Soave procedure. We left a short rectal seromuscular sleeve of 1.5–2 cm above the dentate line. From December 2014 to December 2017, 55 pediatric patients were operated on. Age ranged from 6 months to 10 years old (median = 24.5 months). The aganglionic segment was located in the rectum (n = 38), the sigmoid colon (n = 13), and the left colon (n = 4). The mean total operative time was 93.2 ± 35 min (ranging from 80 to 180 min). Minimal blood was lost during the surgery. During the follow-up period, 41 patients (74.6%) had 1–2 defecations per day, 12 patients (21.8%) had 3–4 defecations per day, and 2 patients (3.6%) had more than 4 defecations per day. Fecal incontinence, enterocolitis, and mild soiling occurred in three (5.4%), four (7.3%), and two pediatric patients, respectively. Robotic-assisted Soave procedure for Hirschsprung’s disease in children is a safe and effective technique. However, a skilled robotic surgical team and procedural modifications are needed.


2021 ◽  
pp. 1-1
Author(s):  
Camilla Tabasso ◽  
Nicola Mimmo ◽  
Venanzio Cichella ◽  
Lorenzo Marconi

Sign in / Sign up

Export Citation Format

Share Document