Multifunctional Enzymes, Multi-Enzymatic Complexes and Metabolic Channelling

2009 ◽  
pp. 679-722
Author(s):  
Jeannine Yon-Kahn ◽  
Guy Hervé
2012 ◽  
Vol 48 (2) ◽  
pp. 77 ◽  
Author(s):  
Xiang Li ◽  
Zexuan Liu ◽  
Zeen Cheng ◽  
Xianwu Cheng

2000 ◽  
Vol 2 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Boris N. Kholodenko ◽  
Hans V. Westerhoff ◽  
Jim Schwaber ◽  
Marta Cascante

Author(s):  
Boris N. Kholodenko ◽  
Marta Cascante ◽  
Hans V. Westerhoff

Author(s):  
Sima SHAHROKHZADEH ◽  
Azam SOLEIMANI ◽  
Dor-Mohammad KORDI-TAMANDANI ◽  
Mohammad Hossein SANGTARASH ◽  
Omid NEJATI ◽  
...  

Background: Vesicoureteral reflux (VUR) disease is the most common type of urinary tract anomalies in children. Genetic risk factors may be associated with the etiology of VUR. The role of the Glutathione S-transferases (GSTs) as multifunctional enzymes is cellular oxidative stress handling. This is the first study aimed at evaluating the relative risk of GSTP1, GSTM1, and GSTT1 polymorphisms in VUR susceptibility in children and provides new important insights into the genetics of affected children. Methods: The study was done in 2013 in Sistan and Baluchestan University, eastern Iran. Genotyping of three GSTP1, GSTM1, and GSTT1 genes were determined using the multiplex polymerase chain reaction assay in 216 reactions for 72 VUR children and 312 reactions for 104 healthy controls. Results: The presence of GSTT1 deletion was associated with high risk of VUR in children, whereas GSTP1 and GSTM1 genotypes did not show the same effect. Furthermore, the combination of GSTT1/GSTM1 and GSTT1/ GSTP1 genotypes showed a significant influence on lower risk of VUR in children. Conclusion: Deletion of GSTT1 functional gene is a genetic risk factor causing VUR in children. Interestingly, the combination of GSTM1 and GSTP1 null genotypes with GSTT1 has shown a protective role against risk of GSTT1 deletion.


Author(s):  
Ye Wang ◽  
Xin-jing Yue ◽  
Shu-fei Yuan ◽  
Yu Hong ◽  
Wei-feng Hu ◽  
...  

The biosynthetic genes for secondary metabolites are often clustered into giant operons with no transcription terminator before the end. The long transcripts are frangible and the transcription efficiency declines along with the process. Internal promoters might occur in operons to coordinate the transcription of individual genes, but their effects on the transcription of operon genes and the yield of metabolites have been less investigated. Epothilones are a kind of antitumor polyketides synthesized by seven multifunctional enzymes encoded by a 56-kb operon. In this study, we identified multiple internal promoters in the epothilone operon. We performed CRISPR-dCas9–mediated transcription activation of internal promoters, combined activation of different promoters, and activation in different epothilone-producing M. xanthus strains. We found that activation of internal promoters in the operon was able to promote the gene transcription, but the activation efficiency was distinct from the activation of separate promoters. The transcription of genes in the operon was influenced by not only the starting promoter but also internal promoters of the operon; internal promoters affected the transcription of the following and neighboring upstream/downstream genes. Multiple interferences between internal promoters thus changed the transcriptional profile of operon genes and the production of epothilones. Better activation efficiency for the gene transcription and the epothilone production was obtained in the low epothilone-producing strains. Our results highlight that interactions between promoters in the operon are critical for the gene transcription and the metabolite production efficiency.


Genes ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 328 ◽  
Author(s):  
Mohammad Sayari ◽  
Magriet A. van der Nest ◽  
Emma T. Steenkamp ◽  
Nicole C. Soal ◽  
P. Markus Wilken ◽  
...  

In filamentous fungi, genes in secondary metabolite biosynthetic pathways are generally clustered. In the case of those pathways involved in nonribosomal peptide production, a nonribosomal peptide synthetase (NRPS) gene is commonly found as a main element of the cluster. Large multifunctional enzymes are encoded by members of this gene family that produce a broad spectrum of bioactive compounds. In this research, we applied genome-based identification of nonribosomal peptide biosynthetic gene clusters in the family Ceratocystidaceae. For this purpose, we used the whole genome sequences of species from the genera Ceratocystis, Davidsoniella, Thielaviopsis, Endoconidiophora, Bretziella, Huntiella, and Ambrosiella. To identify and characterize the clusters, different bioinformatics and phylogenetic approaches, as well as PCR-based methods were used. In all genomes studied, two highly conserved NRPS genes (one monomodular and one multimodular) were identified and their potential products were predicted to be siderophores. Expression analysis of two Huntiella species (H. moniliformis and H. omanensis) confirmed the accuracy of the annotations and proved that the genes in both clusters are expressed. Furthermore, a phylogenetic analysis showed that both NRPS genes of the Ceratocystidaceae formed distinct and well supported clades in their respective phylograms, where they grouped with other known NRPSs involved in siderophore production. Overall, these findings improve our understanding of the diversity and evolution of NRPS biosynthetic pathways in the family Ceratocystidaceae.


Sign in / Sign up

Export Citation Format

Share Document