Control Configuration of Linear Multivariable Plants: Advanced RGA Based Techniques

Author(s):  
Ali Khaki-Sedigh ◽  
Bijan Moaveni
Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 105
Author(s):  
Thinh Huynh ◽  
Minh-Thien Tran ◽  
Dong-Hun Lee ◽  
Soumayya Chakir ◽  
Young-Bok Kim

This paper proposes a new method to control the pose of a camera mounted on a two-axis gimbal system for visual servoing applications. In these applications, the camera should be stable while its line-of-sight points at a target located within the camera’s field of view. One of the most challenging aspects of these systems is the coupling in the gimbal kinematics as well as the imaging geometry. Such factors must be considered in the control system design process to achieve better control performances. The novelty of this study is that the couplings in both mechanism’s kinematics and imaging geometry are decoupled simultaneously by a new technique, so popular control methods can be easily implemented, and good tracking performances are obtained. The proposed control configuration includes a calculation of the gimbal’s desired motion taking into account the coupling influence, and a control law derived by the backstepping procedure. Simulation and experimental studies were conducted, and their results validate the efficiency of the proposed control system. Moreover, comparison studies are conducted between the proposed control scheme, the image-based pointing control, and the decoupled control. This proves the superiority of the proposed approach that requires fewer measurements and results in smoother transient responses.


2001 ◽  
Vol 40 (4) ◽  
pp. 1186-1199 ◽  
Author(s):  
Jose Alvarez-Ramirez ◽  
Rosendo Monroy-Loperena

AIChE Journal ◽  
1987 ◽  
Vol 33 (10) ◽  
pp. 1620-1635 ◽  
Author(s):  
Sigurd Skogestad ◽  
Manfred Morari

Author(s):  
Jenna L Sartucci ◽  
Arindam Maity ◽  
Manikandan Mohanan ◽  
Jeffery A. Bertke ◽  
Miklos Kertesz ◽  
...  

Understanding the doping mechanism in organic semiconductors and generating molecular design rules to control the doping process is crucial to improve the performance of organic electronics. Even though controlling the...


Author(s):  
Srinivas Swaroop Kolla ◽  
Ram S. Mohan ◽  
Ovadia Shoham

Gas Carry-Under (GCU) is one of the undesirable phenomena that exists in the GLCC©1 even within the Operational Envelope (OPEN) for liquid carry-over. Few studies that are available on GLCC© GCU have been carried out when the GLCC© is operated in a metering loop configuration characterized by recombined outlets. In such configurations the gas and the liquid outlets of the GLCC are recombined downstream which acts as passive level control. However, studies have shown that the GLCC© OPEN increases significantly when active control strategies are employed. There has not been a systematic study aimed at analyzing the effect of control on the GCU in the GLCC. This study compares the previously published GLCC GCU swirling flow mechanism under recombination outlet configuration with data taken under the separated outlet configuration (control configuration). Experimental investigations for GCU are conducted in a state-of-the-art test facility for air-water and air-oil flow incorporating pressure and level control configurations. The experiments are carried out using a 3″ diameter GLCC© equipped with 3 sequential trap sections to measure simultaneously the Gas Volume Fraction (GVF) and gas evolution in the lower part of the GLCC. Also, gas trap sections are installed in the liquid leg of the GLCC© to measure simultaneously the overall GCU. The liquid level was controlled at 6″ below the GLCC© inlet for all experiments using various control strategies. Tangential wall jet impingement is the cause for entrainment of gas, thereby leading to GCU. 3 different flow mechanisms have been identified in the lower part of the GLCC and have significant effect on the GCU. Viscosity and surface tension are observed to affect the GCU. The extensive acquired data shed light on the complex flow behavior in the lower part of the GLCC© and its effect on the GCU of the GLCC©.


Sign in / Sign up

Export Citation Format

Share Document