Conservation of Mass and Energy for the Moist Atmospheric Primitive Equations on Unstructured Grids

Author(s):  
Mark A. Taylor
Author(s):  
A. I. Lopato ◽  
◽  
A. G. Eremenko ◽  

Recently, we developed a numerical approach for the simulation of detonation waves on fully unstructured grids and applied it to the numerical study of the mechanisms of detonation initiation in multifocusing systems. Current work is devoted to further development of our numerical approach, namely, parallelization of the numerical scheme and introduction of more comprehensive detailed chemical kinetics scheme.


1998 ◽  
Author(s):  
Kenneth E. Jansen ◽  
Mark S. Shephard ◽  
Joseph E. Flaherty
Keyword(s):  

2007 ◽  
Author(s):  
Joannes J. Westerink ◽  
Clint Dawson ◽  
Rick A. Luettich
Keyword(s):  

1971 ◽  
Vol 2 (3) ◽  
pp. 146-166 ◽  
Author(s):  
DAVID A. WOOLHISER

Physically-based, deterministic models, are considered in this paper. Physically-based, in that the models have a theoretical structure based primarily on the laws of conservation of mass, energy, or momentum; deterministic in the sense that when initial and boundary conditions and inputs are specified, the output is known with certainty. This type of model attempts to describe the structure of a particular hydrologic process and is therefore helpful in predicting what will happen when some change occurs in the system.


2021 ◽  
Vol 23 (3) ◽  
Author(s):  
Peter Korn

AbstractWe consider the hydrostatic Boussinesq equations of global ocean dynamics, also known as the “primitive equations”, coupled to advection–diffusion equations for temperature and salt. The system of equations is closed by an equation of state that expresses density as a function of temperature, salinity and pressure. The equation of state TEOS-10, the official description of seawater and ice properties in marine science of the Intergovernmental Oceanographic Commission, is the most accurate equations of state with respect to ocean observation and rests on the firm theoretical foundation of the Gibbs formalism of thermodynamics. We study several specifications of the TEOS-10 equation of state that comply with the assumption underlying the primitive equations. These equations of state take the form of high-order polynomials or rational functions of temperature, salinity and pressure. The ocean primitive equations with a nonlinear equation of state describe richer dynamical phenomena than the system with a linear equation of state. We prove well-posedness for the ocean primitive equations with nonlinear thermodynamics in the Sobolev space $${{\mathcal {H}}^{1}}$$ H 1 . The proof rests upon the fundamental work of Cao and Titi (Ann. Math. 166:245–267, 2007) and also on the results of Kukavica and Ziane (Nonlinearity 20:2739–2753, 2007). Alternative and older nonlinear equations of state are also considered. Our results narrow the gap between the mathematical analysis of the ocean primitive equations and the equations underlying numerical ocean models used in ocean and climate science.


Sign in / Sign up

Export Citation Format

Share Document