coastal circulation
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 18)

H-INDEX

24
(FIVE YEARS 1)

MAUSAM ◽  
2021 ◽  
Vol 49 (3) ◽  
pp. 345-360
Author(s):  
S. K. BEHERA ◽  
P. S. SALVEKAR

A simple wind driven ocean circulation model with one active layer is used to simulate the coastal circulation around India. The close agreement of numerical results to that of the observed fields ind1cate the influence of wind on the coastal circulation. The northward currents along the west coast of India during winter months are dominated by remote forcing from Bay of Bengal; however the southward currents during summer months are less influenced by the remote forcing. The coastaly trapped Kelvin waves which give rise to the remote forcing response are found to be produced by the annual cycle in the local wind of the Bay of Bengal. Equatorial waves do not provide the correct phase of west coast circulation. The island chains of Maldive and Laccadive do not affect the model circulation significantly. But the exclusion of Sri Lanka from the model geometry significantly alters the circulation of southwestern Bay of Bengal during summer months. Some of these findings are already shown by sophisticated multilayer models, e.g., McCreary et al. 1993. However, some of these results are again reproduced here in order to highlight the significance of such simple model and hence the simple model is used for detail study.


2021 ◽  
Vol 8 ◽  
Author(s):  
Serena Blyth Lee ◽  
Fan Zhang ◽  
Charles James Lemckert ◽  
Rodger Tomlinson

Understanding coastal circulation and how it may alter in the future is important in island settings, especially in the South West Pacific, where communities rely heavily upon marine resources, and where sea level rise (SLR) is higher than the global average. In this study we explore the use of an unstructured-mesh finite-volume modelling approach to assist in filling the knowledge gaps with respect to coastal circulation in remote island locations—selecting the Vanuatu and New Caledonia archipelagos as our example study site. Past limited observations and modelling studies are leveraged to construct and verify a regional/coastal ocean model based on the Finite-Volume Community Ocean Model (FVCOM). Following verification with respect to tidal behaviour, we investigate how changes in wind speed and direction, and SLR, alter coastal water levels and coastal currents. Results showed tidal residual circulation was typically associated with flow separation at headlands and islands. Trade winds had negligible effect on water levels at the coast, however, wind-residual circulation was sensitive to both wind speed and direction. Wind-residual currents were typically strongest close to coastlines. Wind residual circulation patterns were strongly influenced by Ekman flow, while island blocking, topographic steering and geostrophic currents also appear to influence current patterns. Tidal amplitudes and phases were unchanged due to SLR of up to 2 m, while maximum current speeds altered by as much as 20 cm/s within some coastal embayments. Non-linear relationships between SLR and maximum current speeds were seen at some coastal reef platform sites. Under higher sea levels, tidal residual currents altered by less than ±2 cm/s which is relatively significant given maximum tidal residual current speeds are typically below 10 cm/s. Our findings indicate that under higher sea levels, coastal processes governing sediment transport, pollutant dispersal and larval transport are likely to alter, which may have implications for coastal environments and ecosystems. Given winds influence coastal circulation and subsequent coastal processes, changes in trade winds due to climate change may act to further alter coastal processes. It is felt that the current modelling approach can be applied to other regions to help fill critical knowledge gaps.


2021 ◽  
Vol 161 ◽  
pp. 101791
Author(s):  
Peng Zhan ◽  
George Krokos ◽  
Sabique Langodan ◽  
Daquan Guo ◽  
Hari Dasari ◽  
...  

2021 ◽  
Vol 28 (1) ◽  
Author(s):  
S. G. Demyshev ◽  
N. A. Evstigneeva ◽  
D. V. Alekseev ◽  
O. A. Dymova ◽  
N. A. Miklashevskaya ◽  
...  

Purpose. The study is aimed at evaluating effectiveness of the procedure of the observational data assimilation using the Kalman filter algorithm as compared to sequential analysis of the hydrophysical fields based on the optimal interpolation method, and at analyzing the mesoscale features of coastal circulation near the western Crimea coast and in the Sevastopol region. Methods and Results. Based on the hydrodynamic model adapted to the Black Sea coastal zone conditions including the open boundary and on the temperature and salinity data from the hydrological survey in 2007, the dynamic and energy characteristics of the Black Sea coastal circulation were calculated with high spatial resolution (horizontal grid is ~ 1.6 × 1.6 km and 30 vertical horizons). The hydrophysical fields were reconstructed using two algorithms of data assimilation: the sequential optimal interpolation and the modified Kalman filter. The kinetic energy changed mainly due to the wind action, vertical friction and the work of pressure forces; the potential energy – due to the potential energy advection and the horizontal turbulent diffusion. The following circulation features were reconstructed: the anticyclonic eddy with the radius about 15 km in the Kalamita Bay in the water upper layer, the anticyclonic eddy with the radius about 15 km between 32.2 and 32.6° E in the whole water layer, the intense current near Sevastopol and along the Crimea western coast directed to the north and northwest, and the submesoscale eddies of different signs of rotation in the upper layer. Conclusions. It is shown that having been taken into account, heterogeneity and non-isotropy of the error estimates of the temperature and salinity fields relative to the correlation function lead to qualitative and quantitative differences in the hydrodynamic fields (amplification of currents, change of the currents’ direction and eddy formations were better pronounced). At the same time, the mean square errors of the thermohaline fields’ estimates decreased. Formation of the anticyclonic eddy with the radius about 15 km in the Kalamita Bay could be related to the current shear instability. Submesoscale eddies with the diameters less than 5 km were formed when the current flowed around the coastline and the bottom topography inhomogeneities.


2021 ◽  
Vol 37 (1) ◽  
Author(s):  
S. G. Demyshev ◽  
N. A. Evstigneeva ◽  
D. V. Alekseev ◽  
O. A. Dymova ◽  
N. A. Miklashevskaya ◽  
...  

Purpose. The study is aimed at evaluating effectiveness of the procedure of the observational data assimilation using the Kalman filter algorithm as compared to sequential analysis of the hydrophysical fields based on the optimal interpolation method, and at analyzing the mesoscale features of coastal circulation near the western Crimea coast and in the Sevastopol region. Methods and Results. Based on the hydrodynamic model adapted to the Black Sea coastal zone conditions including the open boundary and on the temperature and salinity data from the hydrological survey in 2007, the dynamic and energy characteristics of the Black Sea coastal circulation were calculated with high spatial resolution (horizontal grid is ~1.6×1.6 km and 30 vertical horizons). The hydrophysical fields were reconstructed using two algorithms of data assimilation: the sequential optimal interpolation and the modified Kalman filter. The kinetic energy changed mainly due to the wind action, vertical friction and the work of pressure forces; the potential energy – due to the potential energy advection and the horizontal turbulent diffusion. The following circulation features were reconstructed: the anticyclonic eddy with the radius about 15 km in the Kalamitsky Bay in the water upper layer, the anticyclonic eddy with the radius about 15 km between 32.2 and 32.6° E in the whole water layer, the intense current near Sevastopol and along the Crimea western coast directed to the north and northwest, and the submesoscale eddies of different signs of rotation in the upper layer. Conclusions. It is shown that having been taken into account, heterogeneity and non-isotropy of the error estimates of the temperature and salinity fields relative to the correlation function lead to qualitative and quantitative differences in the hydrodynamic fields (amplification of currents, change of the currents’ direction and eddy formations were better pronounced). At the same time, the mean square errors of the thermohaline fields’ estimates decreased. Formation of the anticyclonic eddy with the radius about 15 km in the Kalamitsky Bay could be related to the current shear instability. Submesoscale eddies with the diameters less than 5 km were formed when the current flowed around the coastline and the bottom topography inhomogeneities


2020 ◽  
Vol 7 ◽  
Author(s):  
Roberto Sorgente ◽  
Antonia Di Maio ◽  
Federica Pessini ◽  
Alberto Ribotti ◽  
Sergio Bonomo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document