Towards Rapid Dynamic Partial Reconfiguration in Video-Based Driver Assistance Systems

Author(s):  
Christopher Claus ◽  
Rehan Ahmed ◽  
Florian Altenried ◽  
Walter Stechele
2007 ◽  
Vol 49 (3) ◽  
Author(s):  
Christopher Claus ◽  
Walter Stechele ◽  
Andreas Herkersdorf

In this article the Autovision architecture is presented, a new Multi Processor System-on-Chip (MPSoC) architecture for future video-based driver assistance systems, using run-time reconfigurable hardware accelerator engines for video processing. According to various driving conditions (highway, city, sunlight, rain, tunnel entrance) different algorithms have to be used for video processing. These different algorithms require different hardware accelerator engines, which are loaded into the Autovision chip at run-time of the system, triggered by changing driving conditions. It was investigated how to use dynamic partial reconfiguration to load and operate the correct hardware accelerator engines in time, while removing unused engines in order to save precious chip area.


2021 ◽  
Vol 13 (8) ◽  
pp. 4264
Author(s):  
Matúš Šucha ◽  
Ralf Risser ◽  
Kristýna Honzíčková

Globally, pedestrians represent 23% of all road deaths. Many solutions to protect pedestrians are proposed; in this paper, we focus on technical solutions of the ADAS–Advanced Driver Assistance Systems–type. Concerning the interaction between drivers and pedestrians, we want to have a closer look at two aspects: how to protect pedestrians with the help of vehicle technology, and how pedestrians–but also car drivers–perceive and accept such technology. The aim of the present study was to analyze and describe the experiences, needs, and preferences of pedestrians–and drivers–in connection with ADAS, or in other words, how ADAS should work in such a way that it would protect pedestrians and make walking more relaxed. Moreover, we interviewed experts in the field in order to check if, in the near future, the needs and preferences of pedestrians and drivers can be met by new generations of ADAS. A combination of different methods, specifically, an original questionnaire, on-the-spot interviewing, and expert interviews, was used to collect data. The qualitative data was analyzed using qualitative text analysis (clustering and categorization). The questionnaire for drivers was answered by a total of 70 respondents, while a total of 60 pedestrians agreed to complete questionnaires concerning pedestrian safety. Expert interviews (five interviews) were conducted by means of personal interviews, approximately one hour in duration. We conclude that systems to protect pedestrians–to avoid collisions of cars with pedestrians–are considered useful by all groups, though with somewhat different implications. With respect to the features of such systems, the considerations are very heterogeneous, and experimentation is needed in order to develop optimal systems, but a decisive argument put forward by some of the experts is that autonomous vehicles will have to be programmed extremely defensively. Given this argument, we conclude that we will need more discussion concerning typical interaction situations in order to find solutions that allow traffic to work both smoothly and safely.


Author(s):  
Loredana Lavinia Staicu ◽  
Robert Valentin Puiu ◽  
Razvan Bogdan ◽  
Mihaela Crisan-Vida ◽  
Marius Marcu

Author(s):  
Mike Köhler ◽  
Jürgen Hasch ◽  
Hans Ludwig Blöcher ◽  
Lorenz-Peter Schmidt

Radar sensors are used widely in modern driver assistance systems. Available sensors nowadays often operate in the 77 GHz band and can accurately provide distance, velocity, and angle information about remote objects. Increasing the operation frequency allows improving the angular resolution and accuracy. In this paper, the technical feasibility to move the operation frequency beyond 100 GHz is discussed, by investigating dielectric properties of radome materials, the attenuation of rain and atmosphere, radar cross-section behavior, active circuits technology, and frequency regulation issues. Moreover, a miniaturized antenna at 150 GHz is presented to demonstrate the possibilities of high-resolution radar for cars.


Sign in / Sign up

Export Citation Format

Share Document