Communication and Verification for Radar Sensors in the Context of Driver Assistance Systems

Author(s):  
Loredana Lavinia Staicu ◽  
Robert Valentin Puiu ◽  
Razvan Bogdan ◽  
Mihaela Crisan-Vida ◽  
Marius Marcu
Author(s):  
Mike Köhler ◽  
Jürgen Hasch ◽  
Hans Ludwig Blöcher ◽  
Lorenz-Peter Schmidt

Radar sensors are used widely in modern driver assistance systems. Available sensors nowadays often operate in the 77 GHz band and can accurately provide distance, velocity, and angle information about remote objects. Increasing the operation frequency allows improving the angular resolution and accuracy. In this paper, the technical feasibility to move the operation frequency beyond 100 GHz is discussed, by investigating dielectric properties of radome materials, the attenuation of rain and atmosphere, radar cross-section behavior, active circuits technology, and frequency regulation issues. Moreover, a miniaturized antenna at 150 GHz is presented to demonstrate the possibilities of high-resolution radar for cars.


2012 ◽  
Vol 2012 (CICMT) ◽  
pp. 000077-000081
Author(s):  
Sebastian Brunner ◽  
Manfred Stadler ◽  
Xin Wang ◽  
Frank Bauer ◽  
Klaus Aichholzer

In this paper we will present an application of advanced Low Temperature Cofired Ceramic (LTCC) technology beyond 60 GHz. Therefore a RF frontend for 76–81 GHz radar frequency was built. LTCC is a well established technology for applications for consumer handheld units <5 GHz but will provide solutions for applications for high frequencies in the range of 60 GHz and beyond. Radar sensors operating in the 76-81 GHz range are considered key for Advanced Driver Assistance Systems (ADAS) like Adaptive Cruise Control (ACC), Collision Mitigation and Avoidance Systems (CMS) or Lane Change Assist (LCA). These applications are the next wave in automotive safety systems and have thus generated increased interest in lower-cost solutions especially for the mm-wave frontend section.


Author(s):  
Raik Schnabel ◽  
Raphael Hellinger ◽  
Dirk Steinbuch ◽  
Joachim Selinger ◽  
Michael Klar ◽  
...  

Radar sensors are key components of modern driver assistance systems. The application of such systems in urban environments for safety applications is the primary goal of the project “Radar on Chip for Cars” (RoCC). Major outcomes of this project will be presented and discussed in this contribution. These outcomes include the specification of radar sensors for future driver assistance systems, radar concepts, and integration technologies for silicon-germanium (SiGe) MMICs, as well as the development and evaluation of a system demonstrator. A radar architecture utilizing planar antennas and highly integrated components will be proposed and discussed with respect to system specifications. The developed system demonstrator will be evaluated in terms of key parameters such as field of view, distance, and angular separability. Finally, as an outlook a new mid range radar (MRR) will be introduced incorporating several concepts and technologies developed in this project.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4561
Author(s):  
Răzvan Bogdan ◽  
Mihaela Crișan-Vida ◽  
Darius Barmayoun ◽  
Loredana Lavinia Staicu ◽  
Robert Valentin Puiu ◽  
...  

New trends in the automotive industry such as autonomous driving and Car2X require a large amount of data to be exchanged between different devices. Radar sensors are key components in developing vehicles of the future, therefore these devices are used in a large spectrum of applications, where data traffic is of paramount importance. As a result, communication traffic volumes have become more complex, leading to the research of optimization approaches to be applied at the AUTOSAR level. Our paper offers such an optimization solution at the AUTOSAR communication level. The radar sensor is accessed in a remote manner, and the experiments aimed at performance measurements revealed that our solution is superior to the Full AUTOSAR implementation in terms of memory usage and runtime measurements.


2016 ◽  
Vol 11 (5) ◽  
pp. 52-57
Author(s):  
Dietmar Stapel ◽  
Martin Mühlenberg ◽  
Carsten Roch ◽  
Christian Frank

Sign in / Sign up

Export Citation Format

Share Document