Improving the Calibration of the MOLAND Urban Growth Model with Land-Use Information Derived from a Time-Series of Medium Resolution Remote Sensing Data

Author(s):  
Tim Van de Voorde ◽  
Johannes van der Kwast ◽  
Inge Uljee ◽  
Guy Engelen ◽  
Frank Canters
2018 ◽  
Vol 28 (2) ◽  
pp. 274-286 ◽  
Author(s):  
Inoka Sandamali Serasinghe Pathiranage ◽  
Lakshmi N. Kantakumar ◽  
Sivanantharajah Sundaramoorthy

2021 ◽  
Vol 10 (4) ◽  
pp. 212
Author(s):  
Rana N. Jawarneh

Urban expansion and loss of primarily agricultural land are two of the challenges facing Jordan. Located in the most productive agricultural area of Jordan, Greater Irbid Municipality (GIM) uncontrolled urban growth has posed a grand challenge in both sustaining its prime croplands and developing comprehensive planning strategies. This study investigated the loss of agricultural land for urban growth in GIM from 1972–2050 and denoted the negative consequences of the amalgamation process of 2001 on farmland loss. The aim is to unfold and track historical land use/cover changes and forecast these changes to the future using a modified SLEUTH-3r urban growth model. The accuracy of prediction results was assessed in three different sites between 2015 and 2020. In 43 years the built-up area increased from 29.2 km2 in 1972 to 71 km2 in 2015. By 2050, the built-up urban area would increase to 107 km2. The overall rate of increase, however, showed a decline across the study period, with the periods of 1990–2000 and 2000–2015 having the highest rate of built-up areas expansion at 68.6 and 41.4%, respectively. While the agricultural area increased from 178 km2 in 1972 to 207 km2 in 2000, it decreased to 195 km2 in 2015 and would continue to decrease to 188 km2 by 2050. The district-level analysis shows that from 2000–2015, the majority of districts exhibited an urban increase at twice the rate of 1990–2000. The results of the net change analysis of agriculture show that between 1990 and 2000, 9 districts exhibited a positive gain in agricultural land while the rest of the districts showed a negative loss of agricultural land. From 2000 to 2015, the four districts of Naser, Nozha, Rawdah, and Hashmyah completely lost their agricultural areas for urbanization. By 2050, Idoon and Boshra districts will likely lose more than half of their high-quality agricultural land. This study seeks to utilize a spatially explicit urban growth model to support sustainable planning policies for urban land use through forecasting. The implications from this study confirm the worldwide urbanization impacts on losing the most productive agricultural land in the outskirts and consequences on food production and food security. The study calls for urgent actions to adopt a compact growth policy with no new land added for development as what is available now exceeds what is needed by 2050 to accommodate urban growth in GIM.


2015 ◽  
Vol 19 (1) ◽  
pp. 507-532 ◽  
Author(s):  
P. Karimi ◽  
W. G. M. Bastiaanssen

Abstract. The scarcity of water encourages scientists to develop new analytical tools to enhance water resource management. Water accounting and distributed hydrological models are examples of such tools. Water accounting needs accurate input data for adequate descriptions of water distribution and water depletion in river basins. Ground-based observatories are decreasing, and not generally accessible. Remote sensing data is a suitable alternative to measure the required input variables. This paper reviews the reliability of remote sensing algorithms to accurately determine the spatial distribution of actual evapotranspiration, rainfall and land use. For our validation we used only those papers that covered study periods of seasonal to annual cycles because the accumulated water balance is the primary concern. Review papers covering shorter periods only (days, weeks) were not included in our review. Our review shows that by using remote sensing, the absolute values of evapotranspiration can be estimated with an overall accuracy of 95% (SD 5%) and rainfall with an overall absolute accuracy of 82% (SD 15%). Land use can be identified with an overall accuracy of 85% (SD 7%). Hence, more scientific work is needed to improve the spatial mapping of rainfall and land use using multiple space-borne sensors. While not always perfect at all spatial and temporal scales, seasonally accumulated actual evapotranspiration maps can be used with confidence in water accounting and hydrological modeling.


Author(s):  
Hua Ding ◽  
Ru Ren Li ◽  
Li Shuang Sun ◽  
Xin Wang ◽  
Yu Mei Liu

Sign in / Sign up

Export Citation Format

Share Document