New Applications and Theoretical Foundations of the Dominance-based Rough Set Approach

Author(s):  
Roman Słowiński
Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 362 ◽  
Author(s):  
Bibin Mathew ◽  
Sunil Jacob John ◽  
José Carlos R. Alcantud

We lay the theoretical foundations of a novel model, termed picture hesitant fuzzy rough sets, based on picture hesitant fuzzy relations. We also combine this notion with the ideas of multi-granulation rough sets. As a consequence, a new multi-granulation rough set model on two universes, termed a multi-granulation picture hesitant fuzzy rough set, is developed. When the universes coincide or play a symmetric role, the concept assumes the standard format. In this context, we put forward two new classes of multi-granulation picture hesitant fuzzy rough sets, namely, the optimistic and pessimistic multi-granulation picture hesitant fuzzy rough sets. Further, we also investigate the relationships among these two concepts and picture hesitant fuzzy rough sets.


2021 ◽  
Vol 23 (4) ◽  
pp. 56-67
Author(s):  
Vladimir N. Nesterov

The article presents the theoretical foundations for constructing invariant and quasi-invariant relative to the disturbing influences of measuring systems. A historical reference which shows the emergence, evolution and spread of methods of the theory of invariance from automatic control and regulation systems to information and measuring systems and measurements in general is given. The possibilities of new applications of the formulated by academician B.N. Petrov of the two-channel principle are shown. On its basis, methodological signs of the physical feasibility of structural and technological methods are formulated. Theoretical foundations and the method of linearization of principally nonlinear transformation functions of parametric measuring transducers, which are also based on the principle of two-channel, are given. All theoretical positions are supported by practical examples that extend the capabilities of the considered methods to the entire class of parametric measuring transducers as part of non-equilibrium measuring bridges and voltage dividers.


Author(s):  
T. Imura ◽  
S. Maruse ◽  
K. Mihama ◽  
M. Iseki ◽  
M. Hibino ◽  
...  

Ultra high voltage STEM has many inherent technical advantages over CTEM. These advantages include better signal detectability and signal processing capability. It is hoped that it will explore some new applications which were previously not possible. Conventional STEM (including CTEM with STEM attachment), however, has been unable to provide these inherent advantages due to insufficient performance and engineering problems. Recently we have developed a new 1250 kV STEM and completed installation at Nagoya University in Japan. It has been designed to break through conventional engineering limitations and bring about theoretical advantage in practical applications.In the design of this instrument, we exercised maximum care in providing a stable electron probe. A high voltage generator and an accelerator are housed in two separate pressure vessels and they are connected with a high voltage resistor cable.(Fig. 1) This design minimized induction generated from the high voltage generator, which is a high frequency Cockcroft-Walton type, being transmitted to the electron probe.


1982 ◽  
Vol 43 (C7) ◽  
pp. C7-305-C7-308
Author(s):  
H. Ackermann ◽  
B. Bader ◽  
P. Freiländer ◽  
P. Heitjans ◽  
G. Kiese ◽  
...  

2018 ◽  
pp. 68-72
Author(s):  
Yu. K. Taranenko ◽  
O. Yu. Oliynyk ◽  
N. A. Minakova ◽  
E. V. Titova

Sign in / Sign up

Export Citation Format

Share Document