Biologically Inspired Agent System Based on Spiking Neural Network

Author(s):  
Bartłomiej Józef Dzieńkowski ◽  
Urszula Markowska-Kaczmar
2011 ◽  
Vol 11 (2) ◽  
pp. 2035-2041 ◽  
Author(s):  
Aboul Ella Hassanien ◽  
Hameed Al-Qaheri ◽  
El-Sayed A. El-Dahshan

Algorithms ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 165 ◽  
Author(s):  
Krishnamurthy V. Vemuru

We report the design of a Spiking Neural Network (SNN) edge detector with biologically inspired neurons that has a conceptual similarity with both Hodgkin-Huxley (HH) model neurons and Leaky Integrate-and-Fire (LIF) neurons. The computation of the membrane potential, which is used to determine the occurrence or absence of spike events, at each time step, is carried out by using the analytical solution to a simplified version of the HH neuron model. We find that the SNN based edge detector detects more edge pixels in images than those obtained by a Sobel edge detector. We designed a pipeline for image classification with a low-exposure frame simulation layer, SNN edge detection layers as pre-processing layers and a Convolutional Neural Network (CNN) as a classification module. We tested this pipeline for the task of classification with the Digits dataset, which is available in MATLAB. We find that the SNN based edge detection layer increases the image classification accuracy at lower exposure times, that is, for 1 < t < T /4, where t is the number of milliseconds in a simulated exposure frame and T is the total exposure time, with reference to a Sobel edge or Canny edge detection layer in the pipeline. These results pave the way for developing novel cognitive neuromorphic computing architectures for millisecond timescale detection and object classification applications using event or spike cameras.


Author(s):  
S. Soltic ◽  
N. Kasabov

The human brain has an amazing ability to recognize hundreds of thousands of different tastes. The question is: can we build artificial systems that can achieve this level of complexity? Such systems would be useful in biosecurity, the chemical and food industry, security, in home automation, etc. The purpose of this chapter is to explore how spiking neurons could be employed for building biologically plausible and efficient taste recognition systems. It presents an approach based on a novel spiking neural network model, the evolving spiking neural network with population coding (ESNN-PC), which is characterized by: (i) adaptive learning, (ii) knowledge discovery and (iii) accurate classification. ESNN-PC is used on a benchmark taste problem where the effectiveness of the information encoding, the quality of extracted rules and the model’s adaptive properties are explored. Finally, applications of ESNN-PC in recognition of the increasing interest in robotics and pervasive computing are suggested.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
A. Espinal ◽  
H. Rostro-Gonzalez ◽  
M. Carpio ◽  
E. I. Guerra-Hernandez ◽  
M. Ornelas-Rodriguez ◽  
...  

A bioinspired locomotion system for a quadruped robot is presented. Locomotion is achieved by a spiking neural network (SNN) that acts as a Central Pattern Generator (CPG) producing different locomotion patterns represented by their raster plots. To generate these patterns, the SNN is configured with specific parameters (synaptic weights and topologies), which were estimated by a metaheuristic method based on Christiansen Grammar Evolution (CGE). The system has been implemented and validated on two robot platforms; firstly, we tested our system on a quadruped robot and, secondly, on a hexapod one. In this last one, we simulated the case where two legs of the hexapod were amputated and its locomotion mechanism has been changed. For the quadruped robot, the control is performed by the spiking neural network implemented on an Arduino board with 35% of resource usage. In the hexapod robot, we used Spartan 6 FPGA board with only 3% of resource usage. Numerical results show the effectiveness of the proposed system in both cases.


Sign in / Sign up

Export Citation Format

Share Document