locomotion system
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 33)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 12 (1) ◽  
pp. 28
Author(s):  
Anna Luzzi ◽  
Giuseppe Tortora

An endoscopic capsule is a miniaturized ingestible video camera used to acquire images of the gastrointestinal tract wirelessly. Being morphologically equivalent to any ingestible pill, they can be simply swallowed. Endoscopic capsules therefore present an inviting alternative to the traditional endoscope for the examination of the gastrointestinal tract as well for therapeutic purposes. Endoscopic capsules are considered a disruptive technology, as they have revolutionized the examination of the gastrointestinal tract in a relatively short time. The implementation of an active locomotion system can improve the performance of a capsule and, in the solution proposed in this paper, allows providing the capsule the needed power for therapeutic purposes. Alternative therapeutic solutions, based on optical solutions and capsule endoscopy can be applied to patients affected by Helicobacter pylori, a bacterium of the stomach that affects about half of the world population, mainly in developing countries. The infection can be asymptomatic or associated with slight symptomatology. In some cases, it can take to major pathologies or death. The literature reports results deriving from recent applications of photodynamic treatments to H. pylori. Specific wavelengths have been found to exhibit photo-killing capabilities toward the bacterium. Some solutions have been proposed based on the use of endoscopic devices and capsules capable of administering photodynamic therapy inside the stomach. The proposed treatments, however, are invasive and insufficient to achieve long-term eradication. In this work, the administration of photodynamic therapy is proposed, aimed at the eradication of H. pylori by means of an active endoscopic capsule with LED emission. The capsule design, in addition to the therapeutic module aimed at administering an appropriate light intensity at specific wavelengths already demonstrated in the literature, integrates an active locomotion system aimed at maximizing the efficiency of the treatment.


2021 ◽  
Author(s):  
◽  
Nick Thompson

<p>Despite advancements in safety technology, underground mining disasters kill hundreds of people each year. Typically after a disaster, a manned response team will enter the hazardous mine to ascertain its condition and rescue any survivors. A robotic entry platform could significantly reduce the risk to the response teams and the time taken to recover any survivors. However, existing mine search and rescue robots have had limited success in past disasters. Two primary aspects caused the failure of the existing platforms; poor rough terrain ability and lack of ingress protection for the harsh mine environment.  HADES, a novel underground mine reconnaissance robot is developed to address these issues. A lightweight yet robust chassis is manufactured from fibreglass. To allow HADES to operate in the potentially explosive atmosphere, the chassis is protected with a positive pressure gas system, designed to meet the ANZ60079.29 standard. This chassis is sealed against the mine environment with a series of O-rings and lip seals. Whegs are used as the primary locomotion method and are driven with a planetary gearbox and a brushless DC motor. To further improve a rough terrain capability of the locomotion system the rear arm of the chassis is mounted on an actuated pivot, increasing the rough terrain capability of HADES.  To ensure the operator can successfully assess and navigate the mine, HADES carries a comprehensive set of environmental and navigation sensors. The internal electronics and locomotion systems are powered with six Li-Po batteries that achieve an operating time of six hours and an expected range of 25 km.  HADES is 780x800x400 mm and is mostly sealed to the IP68 standard. The locomotion system is robust and can traverse the majority of the terrain expected in an underground mine. Loss of traction is the only problem encountered with the Wheg design. However, this can be easily fixed by changing the tip shape of the Wheg.</p>


2021 ◽  
Author(s):  
◽  
Nick Thompson

<p>Despite advancements in safety technology, underground mining disasters kill hundreds of people each year. Typically after a disaster, a manned response team will enter the hazardous mine to ascertain its condition and rescue any survivors. A robotic entry platform could significantly reduce the risk to the response teams and the time taken to recover any survivors. However, existing mine search and rescue robots have had limited success in past disasters. Two primary aspects caused the failure of the existing platforms; poor rough terrain ability and lack of ingress protection for the harsh mine environment.  HADES, a novel underground mine reconnaissance robot is developed to address these issues. A lightweight yet robust chassis is manufactured from fibreglass. To allow HADES to operate in the potentially explosive atmosphere, the chassis is protected with a positive pressure gas system, designed to meet the ANZ60079.29 standard. This chassis is sealed against the mine environment with a series of O-rings and lip seals. Whegs are used as the primary locomotion method and are driven with a planetary gearbox and a brushless DC motor. To further improve a rough terrain capability of the locomotion system the rear arm of the chassis is mounted on an actuated pivot, increasing the rough terrain capability of HADES.  To ensure the operator can successfully assess and navigate the mine, HADES carries a comprehensive set of environmental and navigation sensors. The internal electronics and locomotion systems are powered with six Li-Po batteries that achieve an operating time of six hours and an expected range of 25 km.  HADES is 780x800x400 mm and is mostly sealed to the IP68 standard. The locomotion system is robust and can traverse the majority of the terrain expected in an underground mine. Loss of traction is the only problem encountered with the Wheg design. However, this can be easily fixed by changing the tip shape of the Wheg.</p>


2021 ◽  
pp. 537-545
Author(s):  
Van-Du Nguyen ◽  
Ky-Thanh Ho ◽  
Ngoc-Tuan La ◽  
Quoc-Huy Ngo ◽  
Khac-Tuan Nguyen

2021 ◽  
Author(s):  
Dina Joy K. Abulon ◽  
Jiaji Li ◽  
J. Michael McCarthy

Abstract In this paper, we present the design of a pneumatically actuated skeleton for a robotic fish. The tail is designed as a one degree of freedom coiling truss that is actuated by air pressure supplied to pouch actuators along the truss. We present that kinematic synthesis procedure, the fabrication and testing of the fish tail system. Our goal is an efficient and effective fish-like locomotion system.


2021 ◽  
Vol 152 ◽  
pp. 107384
Author(s):  
Philipp Schorr ◽  
Lena Zentner ◽  
Klaus Zimmermann ◽  
Valter Böhm

Meccanica ◽  
2021 ◽  
Author(s):  
Khac-Tuan Nguyen ◽  
Ngoc-Tuan La ◽  
Ky-Thanh Ho ◽  
Quoc-Huy Ngo ◽  
Ngoc-Hung Chu ◽  
...  

Biomimetics ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 17
Author(s):  
Elizabeth Islas-García ◽  
Marco Ceccarelli ◽  
Ricardo Tapia-Herrera ◽  
Christopher R. Torres-SanMiguel

This paper presents a biomimetic prototype of a mobile robot that can be used to inspect the subdrainage conditions of pipelines located along different highways in Mexico. Computer-aided design tools have been used to size each of the prototype components as inspired by anatomical spider structure. Springs are integrated to generate proper contact pressure against the pipe walls. The robot locomotion system is implemented with adaptable behaviour for the irregularities of pipelines along its journey. The robot prototype is manufactured in 3D printing with the advantage of having its spare parts easily replaceable. Reported results show internal pipe status through a mini video camera on the top of the robot.


Author(s):  
Ahmad M. Alshorman ◽  
Omar A. Ababneh ◽  
Anas I. Abushaker ◽  
Emran M. Tamimi ◽  
Osama Z. Bani-yassin

Sign in / Sign up

Export Citation Format

Share Document