Foot Pressure, Ground Reaction Force and 3D Motion Analysis of Golf Swing Applied to Spikeless Golf Shoe Development

Author(s):  
Edwardo A. Y. Murakami ◽  
Masaaki Mochimaru
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sung Eun Kim ◽  
Jangyun Lee ◽  
Sae Yong Lee ◽  
Hae-Dong Lee ◽  
Jae Kun Shim ◽  
...  

AbstractThe purpose of this study was to investigate how the ball position along the mediolateral (M-L) direction of a golfer causes a chain effect in the ground reaction force, body segment and joint angles, and whole-body centre of mass during the golf swing. Twenty professional golfers were asked to complete five straight shots for each 5 different ball positions along M-L: 4.27 cm (ball diameter), 2.14 cm (ball radius), 0 cm (reference position at preferred ball position), – 2.14 cm, and – 4.27 cm, while their ground reaction force and body segment motions were captured. The dependant variables were calculated at 14 swing events from address to impact, and the differences between the ball positions were evaluated using Statistical Parametric Mapping. The left-sided ball positions at address showed a greater weight distribution on the left foot with a more open shoulder angle compared to the reference ball position, whereas the trend was reversed for the right-sided ball positions. These trends disappeared during the backswing and reappeared during the downswing. The whole-body centre of mass was also located towards the target for the left-sided ball positions throughout the golf swing compared to the reference ball position, whereas the trend was reversed for the right-sided ball positions. We have concluded that initial ball position at address can cause a series of chain effects throughout the golf swing.


2014 ◽  
Vol 7 (S1) ◽  
Author(s):  
Se won Yoon ◽  
Jeong woo Lee ◽  
Soo ji Park ◽  
Woong sik Park ◽  
Moon jeong Kim

2021 ◽  
Vol 355 ◽  
pp. 109108
Author(s):  
Manish Anand ◽  
Jed A. Diekfuss ◽  
Alexis B. Slutsky-Ganesh ◽  
Dustin R. Grooms ◽  
Scott Bonnette ◽  
...  

2000 ◽  
Author(s):  
Nader Arafati ◽  
Jean Yves Lazennec ◽  
Roger Ohayon

Abstract Human movement modeling has been the object of much research for the past 30 years. In these models the position of foot link was fixed on the ground. We propose to model the feet links as variable, since the position of foot pressure center changes from heel to toes. The ground reaction forces could also be analyzed in real time. We examined this model for some static postures. In standing anatomical position, the maximum articular forces are localized in hip and knee joints. In sagittal plane, the ground reaction force vectors are positioned nearly under ankle joints. The pathological postures like body with pes cavus or with global spine kyphosis increase the articular and muscular forces. In these cases, the position of ground reaction force vectors is moved toward the toes.


Sign in / Sign up

Export Citation Format

Share Document