Integrated 3D motion analysis with functional magnetic resonance neuroimaging to identify neural correlates of lower extremity movement

2021 ◽  
Vol 355 ◽  
pp. 109108
Author(s):  
Manish Anand ◽  
Jed A. Diekfuss ◽  
Alexis B. Slutsky-Ganesh ◽  
Dustin R. Grooms ◽  
Scott Bonnette ◽  
...  
2006 ◽  
Vol 326-328 ◽  
pp. 755-758 ◽  
Author(s):  
Sung Jae Hwang ◽  
Hue Seok Choi ◽  
Hyun Ho Choi ◽  
Han Sung Kim ◽  
Young Ho Kim

In this study, we determined joint moments and muscle forces in the lower extremity during walking with different heel-height shoes using the 3D motion analysis and the corresponding musculoskeletal modeling. Totally fifteen healthy women participated in the 3D motion analysis for various walking with barefoot, flat shoe, 3cm, 6cm and 9cm high heels. Inverse dynamic simulations were also performed using a musculoskeletal model in order to calculate joint moments and muscle forces in the lower extremity. As for the hip, joint angles, joint moments and corresponding muscle forces did not show significant differences. Rectus femoris, a biarticular muscle for hip flexor and knee extensor, revealed stronger effect on the knee than the hip. Soleus, playing the most important role for ankle plantarflexor, showed decreases in the maximum muscle force at pre-swing, as heel height increased. Tibialis anterior produced larger dorsiflexion moments for foot clearance with higher-heeled shoes.


2014 ◽  
Vol 7 (S1) ◽  
Author(s):  
Se won Yoon ◽  
Jeong woo Lee ◽  
Soo ji Park ◽  
Woong sik Park ◽  
Moon jeong Kim

2021 ◽  
pp. 1-14
Author(s):  
Kenny Skagerlund ◽  
Mikael Skagenholt ◽  
Paul J. Hamilton ◽  
Paul Slovic ◽  
Daniel Västfjäll

Abstract This study investigated the neural correlates of the so-called “affect heuristic,” which refers to the phenomenon whereby individuals tend to rely on affective states rather than rational deliberation of utility and probabilities during judgments of risk and utility of a given event or scenario. The study sought to explore whether there are shared regional activations during both judgments of relative risk and relative benefit of various scenarios, thus being a potential candidate of the affect heuristic. Using functional magnetic resonance imaging, we developed a novel risk perception task, based on a preexisting behavioral task assessing the affect heuristic. A whole-brain voxel-wise analysis of a sample of participants (n = 42) during the risk and benefit conditions revealed overlapping clusters in the left insula, left inferior frontal gyrus, and left medial frontal gyrus across conditions. Extraction of parameter estimates of these clusters revealed that activity of these regions during both tasks was inversely correlated with a behavioral measure assessing the inclination to use the affect heuristic. More activity in these areas during risk judgments reflect individuals' ability to disregard momentary affective impulses. The insula may be involved in integrating viscero-somatosensory information and forming a representation of the current emotional state of the body, whereas activity in the left inferior frontal gyrus and medial frontal gyrus indicates that executive processes may be involved in inhibiting the impulse of making judgments in favor of deliberate risk evaluations.


Author(s):  
Lisa Reissner ◽  
Gabriella Fischer ◽  
Renate List ◽  
William R. Taylor ◽  
Pietro Giovanoli ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document