Release of Carbon Dioxide by Terrestrial Ecosystems Over Indonesia During the 1997–1998 ENSO Warm Event

Author(s):  
Pavel Propastin
Author(s):  
S. A. Lysenko

The spatial and temporal particularities of Normalized Differential Vegetation Index (NDVI) changes over territory of Belarus in the current century and their relationship with climate change were investigated. The rise of NDVI is observed at approximately 84% of the Belarus area. The statistically significant growth of NDVI has exhibited at nearly 35% of the studied area (t-test at 95% confidence interval), which are mainly forests and undeveloped areas. Croplands vegetation index is largely descending. The main factor of croplands bio-productivity interannual variability is precipitation amount in vegetation period. This factor determines more than 60% of the croplands NDVI dispersion. The long-term changes of NDVI could be explained by combination of two factors: photosynthesis intensifying action of carbon dioxide and vegetation growth suppressing action of air warming with almost unchanged precipitation amount. If the observed climatic trend continues the croplands bio-productivity in many Belarus regions could be decreased at more than 20% in comparison with 2000 year. The impact of climate change on the bio-productivity of undeveloped lands is only slightly noticed on the background of its growth in conditions of rising level of carbon dioxide in the atmosphere.


2020 ◽  
Author(s):  
Chris R Taylor ◽  
Ben Keane ◽  
Iain Hartley ◽  
Gareth Phoenix

<p>Terrestrial ecosystems absorb 30% of anthropogenic carbon dioxide (CO<sub>2</sub>) emissions, slowing its rising atmospheric concentration and substantially inhibiting climate change. This uptake is believed to be due to elevated CO<sub>2</sub> (eCO<sub>2</sub>) stimulating plant photosynthesis and growth, thus increasing carbon (C) storage in plants and soil organic matter. However, nitrogen (N) limitation can reduce ecosystem C uptake capacity under eCO<sub>2</sub> by as much as 50%. Phosphorus (P) limitation in ecosystems is almost as common as N-limitation and is increasing due to ongoing deposition of N from anthropogenic activities. Despite this, we do not know how P-limited ecosystems will respond to eCO<sub>2</sub>, constituting a major gap in our understanding of how large areas of the biosphere will impact atmospheric CO<sub>2</sub> over the coming decades.</p><p>In the first study conducted into the effect of eCO<sub>2</sub> on P-limited ecosystems with manipulated nutrient availability, the Phosphorus Limitation And ecosystem responses to Carbon dioxide Enrichment project (PLACE), investigates the effects of eCO<sub>2</sub> on C cycling in grasslands, which are a critical global C store. Turf mesocosms from P-limited acidic and limestone grasslands, where N and P inputs have been manipulated for 20 years (control, low N (3.5 g m<sup>-2</sup> y<sup>-1</sup>), high N (14 g m<sup>-2</sup> y<sup>-1</sup>), and P (3.5 g m<sup>-2</sup> y<sup>-1</sup>)), have been exposed to either ambient or eCO<sub>2</sub> (600 ppm) in a miniFACE (mini Free Air Carbon Enrichment) system. Long-term P addition has alleviated P limitation while N additions have exacerbated it. The two contrasting grasslands contain different amounts of organic versus mineral P in their soils and, thus, plants may have to use contrasting strategies to acquire the additional P they need to increase growth rates under elevated CO<sub>2</sub>.</p><p>We present data from the first two growing seasons, including above and below ground productivity, and C, N and P cycling through plant, soil and microbial pools. Aboveground harvest data from the second year have shown eCO<sub>2</sub> has only increased biomass production in the limestone grassland (by 17%; p< 0.0001), and not in the acid grassland. There was also a significant effect of nutrient treatment (p< 0.001) with biomass increasing under P and HN, indicating some co-NP limitation. Stable isotope tracing, using the fumigation CO<sub>2</sub> signal has shown the fate of newly assimilated C and its contribution to gaseous C flux to the atmosphere in the form of methane (CH<sub>4</sub>) and respired CO<sub>2</sub>.  In summary, our first two years of eCO<sub>2</sub> treatment suggests that productivity of limestone and acidic grassland respond differently and that these responses depend on nutrient availability, indicating the complexity of predicting P-limited ecosystem responses as atmospheric CO<sub>2 </sub>continues to rise.</p>


2019 ◽  
Vol 485 (6) ◽  
pp. 732-735
Author(s):  
I. N. Kurganova ◽  
V. O. Lopes de Gerenyu ◽  
A. T. Zhiengaliyev ◽  
V. N. Kudeyarov

Abandoned lands formed in the place of former arable lands occupy considerable areas in the steppe zone and are a basic reserve for the restoration of the steppe biome in Russia. Taking into account the secondary steppe ecosystems developed in the place of the abandoned lands, the total carbon dioxide sink in the steppe zone of Russia can reach 92-121 Mt С per year. This is comparable to the СО2 sink in the managed forests of the Russian Federation (96 Mt/yr) and accounts for 10-20% of the total sink of СО2 in the terrestrial ecosystems of Russia. To increase the sink potential on the territory of the Russian Federation, the natural and restored steppe ecosystems should be preserved.


1996 ◽  
Vol 11 (12) ◽  
pp. 526-527
Author(s):  
James I.L. Morison

2007 ◽  
Author(s):  
Martin F. Garbulsky ◽  
Josep Peñuelas ◽  
Dario Papale ◽  
Iolanda Filella

2014 ◽  
Vol 11 (12) ◽  
pp. 3339-3352 ◽  
Author(s):  
A. S. Wieczorek ◽  
S. A. Hetz ◽  
S. Kolb

Abstract. Microbial degradation of chitin in soil substantially contributes to carbon cycling in terrestrial ecosystems. Chitin is globally the second most abundant biopolymer after cellulose and can be deacetylated to chitosan or can be hydrolyzed to N,N′-diacetylchitobiose and oligomers of N-acetylglucosamine by aerobic and anaerobic microorganisms. Which pathway of chitin hydrolysis is preferred by soil microbial communities is unknown. Supplementation of chitin stimulated microbial activity under oxic and anoxic conditions in agricultural soil slurries, whereas chitosan had no effect. Thus, the soil microbial community likely was more adapted to chitin as a substrate. In addition, this finding suggested that direct hydrolysis of chitin was preferred to the pathway that starts with deacetylation. Chitin was apparently degraded by aerobic respiration, ammonification, and nitrification to carbon dioxide and nitrate under oxic conditions. When oxygen was absent, fermentation products (acetate, butyrate, propionate, hydrogen, and carbon dioxide) and ammonia were detected, suggesting that butyric and propionic acid fermentation, along with ammonification, were likely responsible for anaerobic chitin degradation. In total, 42 different chiA genotypes were detected of which twenty were novel at an amino acid sequence dissimilarity of less than 50%. Various chiA genotypes responded to chitin supplementation and affiliated with a novel deep-branching bacterial chiA genotype (anoxic conditions), genotypes of Beta- and Gammaproteobacteria (oxic and anoxic conditions), and Planctomycetes (oxic conditions). Thus, this study provides evidence that detected chitinolytic bacteria were catabolically diverse and occupied different ecological niches with regard to oxygen availability enabling chitin degradation under various redox conditions on community level.


2020 ◽  
Vol 44 (5) ◽  
pp. 461-474
Author(s):  
Zhao-Zhong FENG ◽  
Pin LI ◽  
Guo-You ZHANG ◽  
Zheng-Zhen LI ◽  
Qin PING ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document