Ab-initio Characterization of Electronic Properties of PbTe Quantum Dots Embedded in a CdTe Matrix

Author(s):  
R. Leitsmann ◽  
F. Bechstedt
2013 ◽  
Vol 2 (1) ◽  
Author(s):  
A. Shamloo ◽  
A.P. Sowa

AbstractWe consider the electronic properties of a system consisting of two quantum dots in physical proximity, which we will refer to as the double-Qdot. Double-Qdots are attractive in light of their potential application to spin-based quantum computing and other electronic applications, e.g. as specialized sensors. Our main goal is to derive the essential properties of the double-Qdot from a model that is rigorous yet numerically tractable, and largely circumvents the complexities of an ab initio simulation. To this end we propose a novel Hamiltonian that captures the dynamics of a bi-partite quantum system, wherein the interaction is described via a Wiener-Hopf type operator. We subsequently describe the density of states function and derive the electronic properties of the underlying system. The analysis seems to capture a plethora of electronic profiles, and reveals the versatility of the proposed framework for double-Qdot channel modelling.


2019 ◽  
Vol 5 (4) ◽  
Author(s):  
Sumana Kundu ◽  
Vijayamohanan K. Pillai

Abstract Conventional inorganic semiconductor quantum dots (QDs) have numerous applications ranging from energy harvesting to optoelectronic and bio-sensing devices primarily due to their unique size and shape tunable band-gap and also surface functionalization capability and consequently, have received significant interest in the last few decades. However, the high market cost of these QDs, on the order of thousands of USD/g and toxicity limit their practical utility in many industrial applications. In this context, graphene quantum dot (GQD), a nanocarbon material and a new entrant in the quantum-confined semiconductors could be a promising alternative to the conventional toxic QDs due to its potential tunability in optical and electronic properties and film processing capability for realizing many of the applications. Variation in optical as well as electronic properties as a function of size, shape, doping and functionalization would be discussed with relevant theoretical backgrounds along with available experimental results and limitations. The review deals with various methods available so far towards the synthesis of GQDs along with special emphasis on characterization techniques starting from spectroscopic, optical and microscopic techniques along with their the working principles, and advantages and limitations. Finally, we will comment on the environmental impact and toxicity limitations of these GQDs and their hybrid nanomaterials to facilitate their future prospects. Graphical Abstract: Structure of doped, functionalized and hybrid GQDs


2021 ◽  
Vol 103 (23) ◽  
Author(s):  
H. V. Grushevskaya ◽  
G. G. Krylov ◽  
S. P. Kruchinin ◽  
B. Vlahovic ◽  
Stefano Bellucci

Author(s):  
Li Liu ◽  
Chuan-Lu Yang ◽  
Zhaopeng Sun ◽  
Meishan Wang ◽  
Xiano-Guang Ma

The direct laser cooling is a very promising method to obtain cold molecules for various applications. However, a molecule with satisfactory electronic and optical properties for the optical scheme is...


Sign in / Sign up

Export Citation Format

Share Document