Synthesis and characterization of graphene quantum dots

2019 ◽  
Vol 5 (4) ◽  
Author(s):  
Sumana Kundu ◽  
Vijayamohanan K. Pillai

Abstract Conventional inorganic semiconductor quantum dots (QDs) have numerous applications ranging from energy harvesting to optoelectronic and bio-sensing devices primarily due to their unique size and shape tunable band-gap and also surface functionalization capability and consequently, have received significant interest in the last few decades. However, the high market cost of these QDs, on the order of thousands of USD/g and toxicity limit their practical utility in many industrial applications. In this context, graphene quantum dot (GQD), a nanocarbon material and a new entrant in the quantum-confined semiconductors could be a promising alternative to the conventional toxic QDs due to its potential tunability in optical and electronic properties and film processing capability for realizing many of the applications. Variation in optical as well as electronic properties as a function of size, shape, doping and functionalization would be discussed with relevant theoretical backgrounds along with available experimental results and limitations. The review deals with various methods available so far towards the synthesis of GQDs along with special emphasis on characterization techniques starting from spectroscopic, optical and microscopic techniques along with their the working principles, and advantages and limitations. Finally, we will comment on the environmental impact and toxicity limitations of these GQDs and their hybrid nanomaterials to facilitate their future prospects. Graphical Abstract: Structure of doped, functionalized and hybrid GQDs

Carbon ◽  
2019 ◽  
Vol 155 ◽  
pp. 491-498 ◽  
Author(s):  
Jianguang Feng ◽  
Qian Guo ◽  
Haiying Liu ◽  
Di Chen ◽  
Ziya Tian ◽  
...  

2018 ◽  
Vol 20 (22) ◽  
pp. 15244-15252 ◽  
Author(s):  
Jianguang Feng ◽  
Hongzhou Dong ◽  
Beili Pang ◽  
Feifei Shao ◽  
ChunKai Zhang ◽  
...  

By the TD-DFT approach, we demonstrate that heteroatoms can assist charge transfer and alter the distribution of electron densities in doped-GQDs.


2021 ◽  
Vol 103 (23) ◽  
Author(s):  
H. V. Grushevskaya ◽  
G. G. Krylov ◽  
S. P. Kruchinin ◽  
B. Vlahovic ◽  
Stefano Bellucci

2021 ◽  
Author(s):  
Md. Farhan Naseh ◽  
Neelam Singh ◽  
Jamilur R. Ansari ◽  
Ashavani Kumar ◽  
Tapan Sarkar ◽  
...  

Abstract Here, we report functionalized graphene quantum dots (GQDs) for the optical detection of arsenic at room temperature. GQDs with the fluorescence of three fundamental colors (red, green, and blue) were synthesized and functionally capped with L-cysteine (L-cys) to impart selectively towards As (III) by exploiting the affinity of L-cys towards arsenite. The optical characterization of GQDs was carried out using UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy, and fluorescence spectrometry and the structural characterizations were performed using transmission electron microscopy. The fluorescence results showed instantaneous quenching in intensity when the GQDs came in contact with As (III) for all test concentrations over a range from 0.025 ppb to 25 ppb, which covers the permissible limit of arsenic in drinking water. The experimental results suggested excellent sensitivity and selectivity towards As (III).


Author(s):  
Shilpa Ramachandran ◽  
M. Sathishkumar ◽  
Nikhil K. Kothurkar ◽  
R. Senthilkumar

RSC Advances ◽  
2019 ◽  
Vol 9 (49) ◽  
pp. 28510-28524 ◽  
Author(s):  
Vivek Pandey ◽  
Vinay Kumar Tripathi ◽  
Keshav Kumar Singh ◽  
Tejasvi Bhatia ◽  
Nitesh Kumar Upadhyay ◽  
...  

Nanoparticles having strong optical and electronic properties are the most widely used materials in sensor development.


Author(s):  
Bianca Pedroso Silva Santos ◽  
Arthur de Castro Ribeiro ◽  
Jose Geraldo de Melo Furtado ◽  
Maria de Fátima Vieira Marques

Polymeric solar cells (PSCs) are a promising alternative for harnessing solar energy and producing clean and renewable energy. In the present work, a new photovoltaic polymer was synthesized to be applied as an electron donor in PSCs. The conjugated polymer showed high solubility. The optical and electronic properties were investigated in which it was possible to observe wide absorption band and bandgap indicating that it is a promising material for application in solar cells.


Sign in / Sign up

Export Citation Format

Share Document