scholarly journals Fast, Effective Molecular Feature Mining by Local Optimization

Author(s):  
Albrecht Zimmermann ◽  
Björn Bringmann ◽  
Ulrich Rückert
2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110192
Author(s):  
Songcan Zhang ◽  
Jiexin Pu ◽  
Yanna Si ◽  
Lifan Sun

Path planning of mobile robots in complex environments is the most challenging research. A hybrid approach combining the enhanced ant colony system with the local optimization algorithm based on path geometric features, called EACSPGO, has been presented in this study for mobile robot path planning. Firstly, the simplified model of pheromone diffusion, the pheromone initialization strategy of unequal allocation, and the adaptive pheromone update mechanism have been simultaneously introduced to enhance the classical ant colony algorithm, thus providing a significant improvement in the computation efficiency and the quality of the solutions. A local optimization method based on path geometric features has been designed to further optimize the initial path and achieve a good convergence rate. Finally, the performance and advantages of the proposed approach have been verified by a series of tests in the mobile robot path planning. The simulation results demonstrate that the presented EACSPGO approach provides better solutions, adaptability, stability, and faster convergence rate compared to the other tested optimization algorithms.


2021 ◽  
Vol 9 (6) ◽  
pp. 581
Author(s):  
Hongrae Park ◽  
Sungjun Jung

A cost-effective mooring system design has been emphasized for traditional offshore industry applications and in the design of floating offshore wind turbines. The industry consensus regarding mooring system design is mainly inhibited by previous project experience. The design of the mooring system also requires a significant number of design cycles. To take aim at these challenges, this paper studies the application of an optimization algorithm to the Floating Production Storage and Offloading (FPSO) mooring system design with an internal turret system at deep-water locations. The goal is to minimize mooring system costs by satisfying constraints, and an objective function is defined as the minimum weight of the mooring system. Anchor loads, a floating body offset and mooring line tensions are defined as constraints. In the process of optimization, the mooring system is analyzed in terms of the frequency domain and time domain, and global and local optimization algorithms are also deployed towards reaching the optimum solution. Three cases are studied with the same initial conditions. The global and local optimization algorithms successfully find a feasible mooring system by reducing the mooring system cost by up to 52%.


Spine ◽  
2017 ◽  
Vol 42 (5) ◽  
pp. 291-297 ◽  
Author(s):  
Shixin Gu ◽  
Wentao Gu ◽  
Jiajun Shou ◽  
Ji Xiong ◽  
Xiaodong Liu ◽  
...  

1995 ◽  
Vol 73 (4) ◽  
pp. 335-341 ◽  
Author(s):  
Károly F. Pál

Sign in / Sign up

Export Citation Format

Share Document