A Biomathematic Models for Tuberculosis Using Lyapunov Stability Functions

Author(s):  
Shih-Ching Ou ◽  
Hung-Yuan Chung ◽  
Chun-Yen Chung
2020 ◽  
Vol 38 (3A) ◽  
pp. 446-456
Author(s):  
Bashar F. Midhat

Step down DC-DC converters are power electronic circuits, which mainly used to convert voltage from a level to a lower level. In this paper, a discontinuous controller is proposed as a control method in order to control Step-Down DC-DC converters. A Lyapunov stability criterion is used to mathematically prove the ability of the proposed controller to give the desired voltage. Simulationsl1 are performedl1 in MATLABl1 software. The simulationl1 resultsl1 are presentedl1 for changesl1 in referencel1 voltagel1 and inputl1 voltagel1 as well as stepl1 loadl1 variations. The resultsl1 showl1 the goodl1 performancel1 of the proposedl1 discontinuousl1 controller.


Author(s):  
Heli Gao ◽  
Mou Chen

This paper studies the fixed-time disturbance estimate and tracking control for two-link manipulators subjected to external disturbance. A fixed-time extended-state disturbance observer (FxTESDO) is proposed by improving the extended state observer. Also, a fixed-time inverse dynamics tracking control (FxTIDTC) scheme based on the FxTESDO is given for two-link manipulators. The fixed-time convergence of the FxTESDO and FxTIDTC is proved by the Lyapunov stability theory and with the aid of the bi-limit homogeneous technique. Numerical simulations are employed to illustrate the effectiveness of the proposed FxTIDTC.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 284
Author(s):  
Evan A. Kalina ◽  
Mrinal K. Biswas ◽  
Jun A. Zhang ◽  
Kathryn M. Newman

The intensity and structure of simulated tropical cyclones (TCs) are known to be sensitive to the planetary boundary layer (PBL) parameterization in numerical weather prediction models. In this paper, we use an idealized version of the Hurricane Weather Research and Forecast system (HWRF) with constant sea-surface temperature (SST) to examine how the configuration of the PBL scheme used in the operational HWRF affects TC intensity change (including rapid intensification) and structure. The configuration changes explored in this study include disabling non-local vertical mixing, changing the coefficients in the stability functions for momentum and heat, and directly modifying the Prandtl number (Pr), which controls the ratio of momentum to heat and moisture exchange in the PBL. Relative to the control simulation, disabling non-local mixing produced a ~15% larger storm that intensified more gradually, while changing the coefficient values used in the stability functions had little effect. Varying Pr within the PBL had the greatest impact, with the largest Pr (~1.6 versus ~0.8) associated with more rapid intensification (~38 versus 29 m s−1 per day) but a 5–10 m s−1 weaker intensity after the initial period of strengthening. This seemingly paradoxical result is likely due to a decrease in the radius of maximum wind (~15 versus 20 km), but smaller enthalpy fluxes, in simulated storms with larger Pr. These results underscore the importance of measuring the vertical eddy diffusivities of momentum, heat, and moisture under high-wind, open-ocean conditions to reduce uncertainty in Pr in the TC PBL.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1272
Author(s):  
Fengsheng Chien ◽  
Stanford Shateyi

This paper studies the global stability analysis of a mathematical model on Babesiosis transmission dynamics on bovines and ticks populations as proposed by Dang et al. First, the global stability analysis of disease-free equilibrium (DFE) is presented. Furthermore, using the properties of Volterra–Lyapunov matrices, we show that it is possible to prove the global stability of the endemic equilibrium. The property of symmetry in the structure of Volterra–Lyapunov matrices plays an important role in achieving this goal. Furthermore, numerical simulations are used to verify the result presented.


1999 ◽  
Vol 09 (12) ◽  
pp. 2315-2320 ◽  
Author(s):  
LOUIS M. PECORA ◽  
THOMAS L. CARROLL

We show that many coupled oscillator array configurations considered in the literature can be put into a simple form so that determining the stability of the synchronous state can be done by a master stability function which solves, once and for all, the problem of synchronous stability for many couplings of that oscillator.


Author(s):  
Da Yang ◽  
Liling Zhu ◽  
Yun Pu

Although traffic flow has attracted a great amount of attention in past decades, few of the studies focused on heterogeneous traffic flow consisting of different types of drivers or vehicles. This paper attempts to investigate the model and stability analysis of the heterogeneous traffic flow, including drivers with different characteristics. The two critical characteristics of drivers, sensitivity and cautiousness, are taken into account, which produce four types of drivers: the sensitive and cautious driver (S-C), the sensitive and incautious driver (S-IC), the insensitive and cautious driver (IS-C), and the insensitive and incautious driver (IS-IC). The homogeneous optimal velocity car-following model is developed into a heterogeneous form to describe the heterogeneous traffic flow, including the four types of drivers. The stability criterion of the heterogeneous traffic flow is derived, which shows that the proportions of the four types of drivers and their stability functions only relating to model parameters are two critical factors to affect the stability. Numerical simulations are also conducted to verify the derived stability condition and further explore the influences of the driver characteristics on the heterogeneous traffic flow. The simulations reveal that the IS-IC drivers are always the most unstable drivers, the S-C drivers are always the most stable drivers, and the stability effects of the IS-C and the S-IC drivers depend on the stationary velocity. The simulations also indicate that a wider extent of the driver heterogeneity can attenuate the traffic wave.


1997 ◽  
Vol 12 (2) ◽  
pp. 81-87
Author(s):  
Erling Murtha-Smith ◽  
Thuyen P. Nguyen

Stability equations are developed for edge joints for Double Layer Grids. Translations are neglected and rotations at each joint are related. Hence, the stiffness matrix reduces to a diagonal matrix of unit bandwidth so each joint becomes an independent substructure. Instability of an edge joint occurs when the minimum principal stiffness coefficient of the joint goes to zero. Using stability functions and the regular geometric relationships of DLG topology, the buckling forces in the members and hence the external load on the system are determined. A simple example in which the members were all of the same length, material and moment of inertia, gives effective length factors for the edge members of between 0.77 to 0.81.


Sign in / Sign up

Export Citation Format

Share Document