Accelerating Swarm Intelligence Algorithms with GPU-Computing

Author(s):  
Robin M. Weiss
Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


Author(s):  
Soumya Ranjan Nayak ◽  
S Sivakumar ◽  
Akash Kumar Bhoi ◽  
Gyoo-Soo Chae ◽  
Pradeep Kumar Mallick

Graphical processing unit (GPU) has gained more popularity among researchers in the field of decision making and knowledge discovery systems. However, most of the earlier studies have GPU memory utilization, computational time, and accuracy limitations. The main contribution of this paper is to present a novel algorithm called the Mixed Mode Database Miner (MMDBM) classifier by implementing multithreading concepts on a large number of attributes. The proposed method use the quick sort algorithm in GPU parallel computing to overcome the state of the art limitations. This method applies the dynamic rule generation approach for constructing the decision tree based on the predicted rules. Moreover, the implementation results are compared with both SLIQ and MMDBM using Java and GPU with the computed acceleration ratio time using the BP dataset. The primary objective of this work is to improve the performance with less processing time. The results are also analyzed using various threads in GPU mining using eight different datasets of UCI Machine learning repository. The proposed MMDBM algorithm have been validated on these chosen eight different dataset with accuracy of 91.3% in diabetes, 89.1% in breast cancer, 96.6% in iris, 89.9% in labor, 95.4% in vote, 89.5% in credit card, 78.7% in supermarket and 78.7% in BP, and simultaneously, it also takes less computational time for given datasets. The outcome of this work will be beneficial for the research community to develop more effective multi thread based GPU solution in GPU mining to handle large set of data in minimal processing time. Therefore, this can be considered a more reliable and precise method for GPU computing.


Sign in / Sign up

Export Citation Format

Share Document