Frictional Metamorphism of Coal in the Upper Silesia Coal Basin, Southern Poland

Author(s):  
Stanisław Roman Ćmiel ◽  
Maria Dziurowicz
2013 ◽  
Vol 63 (2) ◽  
pp. 271-281 ◽  
Author(s):  
Magdalena Kokowska-Pawłowska ◽  
Jacek Nowak

Abstract Kokowska-Pawłowska, M. and Nowak, J. 2013. Phosphorus minerals in tonstein; coal seam 405 at Sośnica- Makoszowy coal mine, Upper Silesia, southern Poland. Acta Geologica Polonica, 63 (2), 271-281. Warszawa. The paper presents results of research on tonstein, which constitutes an interburden in coal seam 405 at the Sośnica- Makoszowy coal mine, Makoszowy field (mining level 600 m), Upper Silesia, southern Poland. The mineral and chemical compositions of the tonstein differ from the typical compositions described earlier for tonsteins from Upper Silesia Coal Basin area. Additionally, minerals present in the tonsteins include kaolinite, quartz, kaolinitised biotite and feldspars. The presence of the phosphatic minerals apatite and goyazite has been recognized. The presence of gorceixite and crandallite is also possible. The contents of CaO (5.66 wt%) and P2O5 (6.2 wt%) are remarkably high. Analysis of selected trace elements demonstrated high contents of Sr (4937 ppm) and Ba (4300 ppm), related to the phosphatic minerals. On the basis of mineral composition the tonstein has been identified as a crystalline tonstein, transitional to a multiplied one.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 195 ◽  
Author(s):  
Aleksandra Koteras ◽  
Jarosław Chećko ◽  
Tomasz Urych ◽  
Małgorzata Magdziarczyk ◽  
Adam Smolinski

The paper presents an analysis of the possible location of geological formations suitable for CO2 storage in the Upper Silesia Coal Basin, Poland. The range of the reservoir has been determined on the basis of an analysis of basic geological parameters, which determine the selection criteria for sites suitable for CO2 storage. A dynamic modelling of the CO2 distribution in the aquifer is presented. Based on the constructed model of migration, reactivity, and geochemical transport of CO2 in geological structures, it is possible to identify potential migration routes and escape sites of CO2 on the surface. The analysis of the technical and geological possibilities of CO2 storage was carried out according to the regulations of the complex Polish geological law, specifically in terms of sequestration possibilities in geological formations.


Author(s):  
Aneta Spyra

AbstractRegardless of origin, all water bodies situated inside forests form a unique habitat for many freshwater animals due to the allochthonous detritus covering the bottom, composed mostly of leaves from waterside trees. For many years these woodland ponds have been considered to be advantageous to regional biodiversity. Investigations were carried out in eight anthropogenic woodland ponds, formed as a consequence of coal mining activities, situated in forest complexes in Upper Silesia (Southern Poland), to evaluate the impact of allochthonic and autochthonic plant detritus on the formation of zoobenthic communities, together with insolation intensity. In sites covered by a layer of allochthonic plant matter, zoobenthos were more abundant compared to places covered by autochthonic detritus. The density of zoobenthos in sun-exposed sites was two to three times greater than in shaded sites.


1998 ◽  
Vol 17 (2) ◽  
pp. 119-124 ◽  
Author(s):  
Zdzislaw Belka

Abstract. Mashkovia is one of the provincial conodonts which developed during late Famennian time in the cratonic regions of Russia. In this study, the taxonomy of this genus is revised, based on diagnostic characters of the Pa elements, such as the morphology of the anterior part of the platform, the ornamentation and the shape of the secondary keels. As a consequence, four species, including M. silesiensis n. sp. now discovered in Upper Silesia of southern Poland, are distinguished. The apparent absence of Mashkovia from North America, Variscan Europe, Australia and Africa cannot be simply explained by using temperature or other global climatic factors as a reason for the provincialism. Currents and/or local palaeoecologic factors were probably more important in controlling the distribution of these conodonts.


2020 ◽  
Vol 224 (2) ◽  
pp. 1381-1403
Author(s):  
Maciej J Mendecki ◽  
Judyta Odrobińska ◽  
Renata Patyńśka ◽  
Adam F Idziak

SUMMARY This paper presents the results of new research on ground-motion relations from three areas in the Upper Silesia Coal Basin (USCB) in Poland and compares them with of ground-motion relations. These three mining areas of the USCB were investigated in order to better predict ground motion caused by seismic events. The study focused on variations in regression parameters and predicted PGA (peak ground acceleration) for different areas to better understand the influence of geology. To compare our results to previous models we had to unify the known ground-motion prediction equations (GMPE). Then, we used various regression models to predict the corresponding PGA values of a relatively strong USCB seismic event with an energy level of 108 J (ML = 3.3) and compared their results. The regression model parameters were compared to each other, particularly those related to energy and distance, which corresponds to a geometrical scattering (attenuation) of seismic waves as well as the influence of wave type (body or surface). Finally, building upon several established regression models, our analysis showed a strong linear correlation between two regression parameters corresponding to energy and distance. However, an open question remains whether this relation can be explained by physics, or, from a mathematical point of view, it is the effect of linear dependence of matrix vectors logE and logR. A comparison of different GMPEs allows for better verification of knowledge about the impact of tremors on ground motion in the USCB.


Sign in / Sign up

Export Citation Format

Share Document