Fast Face Localisation Using AdaBoost Algorithm and Identification with Matrix Decomposition Methods

Author(s):  
Tomasz Marciniak ◽  
Szymon Drgas ◽  
Damian Cetnarowicz
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
David Marco ◽  
Guadalupe López-Morales ◽  
María del Mar Sánchez-López ◽  
Ángel Lizana ◽  
Ignacio Moreno ◽  
...  

AbstractIn this work we demonstrate customized depolarization spatial patterns by imaging a dynamical time-dependent pixelated retarder. A proof-of-concept of the proposed method is presented, where a liquid–crystal spatial light modulator is used as a spatial retarder that emulates a controlled spatially variant depolarizing sample by addressing a time-dependent phase pattern. We apply an imaging Mueller polarimetric system based on a polarization camera to verify the effective depolarization effect. Experimental validation is provided by temporal integration on the detection system. The effective depolarizance results are fully described within a simple graphical approach which agrees with standard Mueller matrix decomposition methods. The potential of the method is discussed by means of three practical cases, which include non-reported depolarization spatial patterns, including exotic structures as a spirally shaped depolarization pattern.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Binlin Wu ◽  
M. Alrubaiee ◽  
W. Cai ◽  
M. Xu ◽  
S. K. Gayen

Diffuse optical imaging (DOI) for detecting and locating targets in a highly scattering turbid medium is treated as a blind source separation (BSS) problem. Three matrix decomposition methods, independent component analysis (ICA), principal component analysis (PCA), and nonnegative matrix factorization (NMF) were used to study the DOI problem. The efficacy of resulting approaches was evaluated and compared using simulated and experimental data. Samples used in the experiments included Intralipid-10% or Intralipid-20% suspension in water as the medium with absorptive or scattering targets embedded.


2010 ◽  
Vol 09 (01) ◽  
pp. 81-92 ◽  
Author(s):  
Ch. Aswani Kumar ◽  
Ramaraj Palanisamy

Matrix decomposition methods: Singular Value Decomposition (SVD) and Semi Discrete Decomposition (SDD) are proved to be successful in dimensionality reduction. However, to the best of our knowledge, no empirical results are presented and no comparison between these methods is done to uncover latent structures in the data. In this paper, we present how these methods can be used to identify and visualise latent structures in the time series data. Results on a high dimensional dataset demonstrate that SVD is more successful in uncovering the latent structures.


Sign in / Sign up

Export Citation Format

Share Document