Probabilistic Model Combination for Support Vector Machine Using Positive-Definite Kernel-Based Regularization Path

Author(s):  
Ning Zhao ◽  
Zhihui Zhao ◽  
Shizhong Liao
Author(s):  
Katsuhiro Tanaka ◽  
Rei Yamamoto

This paper proposes two improvements to the support vector machine (SVM): (i) extension to a semi-positive definite quadratic surface, which improves the discrimination accuracy; (ii) addition of a variable selection constraint. However, this model is formulated as a mixed-integer semi-definite programming (MISDP) problem, and it cannot be solved easily. Therefore, we propose a heuristic algorithm for solving the MISDP problem efficiently and show its effectiveness by using corporate credit rating data.


Author(s):  
David Kozak ◽  
Scott Holladay ◽  
Gregory Fasshauer

We provide a comprehensive framework for forecasting five minute load using Gaussian processes with a positive definite kernel specifically designed for load forecasts. Gaussian processes are probabilistic, enabling us to draw samples from a posterior distribution and provide rigorous uncertainty estimates to complement the point forecast, an important benefit for forecast consumers. As part of the modeling process, we discuss various methods for dimension reduction and explore their use in effectively incorporating weather data to the load forecast. We provide guidance for every step of the modeling process, from model construction through optimization and model combination. We provide results on data from the PJMISO for various periods in 2018. The process is transparent, mathematically motivated, and reproducible. The resulting model provides a probability density of five-minute forecasts for 24 hours.


2020 ◽  
Author(s):  
V Vasilevska ◽  
K Schlaaf ◽  
H Dobrowolny ◽  
G Meyer-Lotz ◽  
HG Bernstein ◽  
...  

2019 ◽  
Vol 15 (2) ◽  
pp. 275-280
Author(s):  
Agus Setiyono ◽  
Hilman F Pardede

It is now common for a cellphone to receive spam messages. Great number of received messages making it difficult for human to classify those messages to Spam or no Spam.  One way to overcome this problem is to use Data Mining for automatic classifications. In this paper, we investigate various data mining techniques, named Support Vector Machine, Multinomial Naïve Bayes and Decision Tree for automatic spam detection. Our experimental results show that Support Vector Machine algorithm is the best algorithm over three evaluated algorithms. Support Vector Machine achieves 98.33%, while Multinomial Naïve Bayes achieves 98.13% and Decision Tree is at 97.10 % accuracy.


2011 ◽  
Vol 131 (8) ◽  
pp. 1495-1501
Author(s):  
Dongshik Kang ◽  
Masaki Higa ◽  
Hayao Miyagi ◽  
Ikugo Mitsui ◽  
Masanobu Fujita ◽  
...  

Author(s):  
Ryoichi ISAWA ◽  
Tao BAN ◽  
Shanqing GUO ◽  
Daisuke INOUE ◽  
Koji NAKAO

Sign in / Sign up

Export Citation Format

Share Document