RETRACTED CHAPTER: Characteristics Analysis of the Motor Block Lattice Resistor of a High Speed Train by Structure Improvement

Author(s):  
Dae-Dong Lee ◽  
Jae-Myung Shim ◽  
Dong-Seok Hyun
2013 ◽  
Vol 300-301 ◽  
pp. 62-67
Author(s):  
Kun Ye ◽  
Ren Xian Li

Cutting is an effective device to reduce crosswind loads acting on trains. The cutting depth, width and gradient of slope are important factors for design and construction of cutting. Based on numerical analysis methods of three-dimensional viscous incompressible aerodynamics equations, aerodynamic side forces and yawing moments acting on the high-speed train, with different depths and widths of cutting,are calculated and analyzed under crosswinds,meanwhile the relationship of the gradient of cutting slope and transverse aerodynamic forces acting on trains are also studied. Simulation results show that aerodynamic side forces and yawing moments acting on the train(the first, middle and rear train)decrease with the increase of cutting depth. The relationship between transverse forces (moments) coefficients acting on the three sections and the cutting depth basically is the three cubed relation. The bigger is cutting width,the worse is running stability of train. The relationship between yawing moments coefficients acting each body of the train and the cutting width approximately is the three cubed relation. The transverse Aerodynamic forces decreased gradually with the increase of the gradient of cutting slope, the relationship between yawing moments coefficients acting each body of the train and the gradient of cutting slope basically is the four cubed relation.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Jia Liu ◽  
Xuesong Jin

According to a large amount of the test data, the mid and high frequency vibrations of high-speed bogies are very notable, especially in the 565~616 Hz range, which are just the passing frequencies corresponding to the 22nd to 24th polygonal wear of the wheel. In order to investigate the main cause of wheel higher-order polygon formation, a 3D flexible model of a Chinese high-speed train bogie is developed using the explicit finite element method. The results show that the couple vibration of bogie and wheelset may lead to the high-order wears of wheel. In order to reduce the coupled resonance of the wheelset and the bogie frame, the effects of the stiffness and damping of the primary suspensions, wheelset axle radius, and bogie frame strength on the vibration transmissibility are discussed carefully. The numerical results show that the resonance peaks in high frequency range can be reduced by reducing the stiffness of axle box rotary arm joint, reducing the wheelset axle radius or strengthening the bogie frame location. The related results may provide a reference for structure improvement of the existing bogies and structure design of the new high-speed bogies.


Radio Science ◽  
2020 ◽  
Vol 55 (10) ◽  
Author(s):  
Zhigang Wu ◽  
Bo Ai ◽  
Jingya Yang ◽  
Tutun Juhana ◽  
Junhong Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document