Automated Building Construction Design Optimization for Reduction of Construction Costs and Energy Demand

Author(s):  
Gerald Zwettler ◽  
Paul Track ◽  
Florian Waschaurek ◽  
Richard Woschitz ◽  
Elmar Hagmann ◽  
...  
Mathematics ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 898
Author(s):  
Michaela Bobková ◽  
Lukáš Pospíšil

We are interested in a contact problem for a thin fixed beam with an internal point obstacle with possible rotation and shift depending on a given swivel and sliding friction. This problem belongs to the most basic practical problems in, for instance, the contact mechanics in the sustainable building construction design. The analysis and the practical solution plays a crucial role in the process and cannot be ignored. In this paper, we consider the classical Euler–Bernoulli beam model, which we formulate, analyze, and numerically solve. The objective function of the corresponding optimization problem for finding the coefficients in the finite element basis combines a quadratic function and an additional non-differentiable part with absolute values representing the influence of considered friction. We present two basic algorithms for the solution: the regularized primal solution, where the non-differentiable part is approximated, and the dual formulation. We discuss the disadvantages of the methods on the solution of the academic benchmarks.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Jay Patel

Buildings and Residential sectors are amongst the major energy consumers of Australia. But the maximum portion of the energy consumed by these buildings is lost due to construction, design, or use of appliances. A significant amount of energy can be saved through this sector, which will not only reduce energy demand, it would further remove a major load from the National Grid. This study assessed a building in the residential sector of Australia and proposed how the use of Passive, Active techniques and adoption of the NZEB concept can help save energy consumption of residential houses. Different techniques and their implementation in the building were performed through both qualitative and quantitative analysis.  The results obtained from the study show the house load of the designed building, a solar system that can take up the entire load, its financial assessment, and how the use of energy-efficient appliances and the use of passive techniques can result in improvement of energy efficiency.


Author(s):  
Bradley Layton ◽  
Lauren Jablonowski ◽  
Ryan Kirby ◽  
Nicholas Lampe

We present a “Bicycle Highway” transportation alternative to automobile commuting by exploring avenues for reducing perceived impediments to bicycle commuting. The three primary goals of the project are: 1) Address the American diabetes and obesity epidemics by making exercising on a daily basis a more desirable and viable alternative. 2) Address the problem of greenhouse gas emissions and pollutants by partially replacing combustion engines with human-powered transportation. 3) Address the problem of the United States’ dependence on foreign oil by diminishing energy demand for short-range transportation. The primary variables we will consider are N, the number of people being transported, d, the distance being traveled, C, the energy cost required to travel the distance, and t, the time required to travel the distance. The Bicycle Highway was found to have a poorer throughput rating when only construction costs were considered, but a better throughput rating when vehicle and fuel costs are introduced. The Bicycle Highway offers a timely and economical solution to the numerous side-effects of the century-long success of the gasoline-powered automobile. A transportation corridor that is designated solely for bicyclists, human-electric hybrid and zero-emission vehicles, would allow for a greater volume of commuter traffic with minimal energetic and entropic impact. This proposed roadway promises to make bicycle travel much safer and will alleviate frustration felt by motorists sharing the road with bicycles. We expect cost-effectiveness of our design to be enhanced further if reductions in obesity, asthma, and lung-disease related costs are considered in future case studies.


2019 ◽  
Vol 111 ◽  
pp. 01060
Author(s):  
Mugurel Florin Talpiga ◽  
Eugen Mandric ◽  
Florin Iordache

In this paper is presented the physical model and mathematical approach which describe the equation system used in system calibration and design optimization. The system proposed for study is built from heat pump, for energy demand delivery, together with auxiliary heating source to face in all low temperature days, when heat pump work at maximum load but the required demand for daily hot water by the building inhabitants is higher. The paper present few of the common used systems in market for which the mathematical equation system will be proposed to come in help designers for in simulation and cost optimization. Simulation of proposed design is realized and results are delivered. The system construction, is optimized by comparison study of design and simulation data for each system type proposed. The comparison study is used for cost estimation of system and energy balance.


2003 ◽  
Vol 47 (01) ◽  
pp. 1-12 ◽  
Author(s):  
Daniele Peri ◽  
Emilio F. Campana

Whereas shape optimal design has received considerable attention in many industrial contexts, the application of automatic optimization procedures to hydrodynamic ship design has not yet reached the same maturity. Nevertheless, numerical tools, combining together modern computational fluid dynamics and optimization methods, can aid in the ship design, enhancing the operational performances and reducing development and construction costs. This paper represents an attempt of applying a multidisciplinary design optimization (MDO) procedure to the enhancement of the performances of an existing ship. At the present stage the work involves modeling, development, and implementation of algorithms only for the hydrodynamic optimization. For a naval surface combatant, the David Taylor Model Basin (DTMB) model ship 5415, a three-objective functions optimization for a two-discipline design problem is devised and solved in the framework of the MDO approach. A simple decision maker is used to order the Pareto optimal solutions, and a gradient-based refinement is performed on the selected design.


APT Bulletin ◽  
1996 ◽  
Vol 27 (3) ◽  
pp. 61
Author(s):  
Daniel F. MacGilvray ◽  
Donald Friedman

1999 ◽  
Vol 3 (4) ◽  
pp. 351-360
Author(s):  
Michael J. Louis

Prefabricated wall systems are becoming a popular element of building construction, lending themselves to streamlining construction schedules and reducing overall construction costs. They also offer the potential for increased quality due to assembly in controlled factory environments. This paper reviews basic principles and concepts for the design of waterproofing systems for prefabricated brick wall panels. Using a project case study, the author shows that failure to adhere to certain proven conventional practices can have serious adverse consequences.


Sign in / Sign up

Export Citation Format

Share Document