Description of a Low-Cost Radio-Frequency System to Detect Hydrocarbons

Author(s):  
Francisco Cabrera ◽  
Víctor Araña ◽  
Carlos Barrera
Keyword(s):  
2021 ◽  
Vol 17 (7) ◽  
pp. 155014772110248
Author(s):  
Miaoyu Li ◽  
Zhuohan Jiang ◽  
Yutong Liu ◽  
Shuheng Chen ◽  
Marcin Wozniak ◽  
...  

Physical health diseases caused by wrong sitting postures are becoming increasingly serious and widespread, especially for sedentary students and workers. Existing video-based approaches and sensor-based approaches can achieve high accuracy, while they have limitations like breaching privacy and relying on specific sensor devices. In this work, we propose Sitsen, a non-contact wireless-based sitting posture recognition system, just using radio frequency signals alone, which neither compromises the privacy nor requires using various specific sensors. We demonstrate that Sitsen can successfully recognize five habitual sitting postures with just one lightweight and low-cost radio frequency identification tag. The intuition is that different postures induce different phase variations. Due to the received phase readings are corrupted by the environmental noise and hardware imperfection, we employ series of signal processing schemes to obtain clean phase readings. Using the sliding window approach to extract effective features of the measured phase sequences and employing an appropriate machine learning algorithm, Sitsen can achieve robust and high performance. Extensive experiments are conducted in an office with 10 volunteers. The result shows that our system can recognize different sitting postures with an average accuracy of 97.02%.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2594
Author(s):  
Aiden Morrison ◽  
Nadezda Sokolova ◽  
James Curran

This paper investigates the challenges of developing a multi-frequency radio frequency interference (RFI) monitoring and characterization system that is optimized for ease of deployment and operation as well as low per unit cost. To achieve this, we explore the design and development of a multiband global navigation satellite system (GNSS) front-end which is intrinsically capable of synchronizing side channel information from non-RF sensors, such as inertial measurement units and integrated power meters, to allow the simultaneous production of substantial amounts of sampled spectrum while also allowing low-cost, real-time monitoring and logging of detected RFI events. While the inertial measurement unit and barometer are not used in the RFI investigation discussed, the design features that provide for their precise synchronization with the RF sample stream are presented as design elements worth consideration. The designed system, referred to as Four Independent Tuners with Data-packing (FITWD), was utilized in a data collection campaign over multiple European and Scandinavian countries in support of the determination of the relative occurrence rates of L1/E1 and L5/E5a interference events and intensities where it proved itself a successful alternative to larger and more expensive commercial solutions. The dual conclusions reached were that it was possible to develop a compact low-cost, multi-channel radio frequency (RF) front-end that implicitly supported external data source synchronization, and that such monitoring systems or similar capabilities integrated within receivers are likely to be needed in the future due to the increasing occurrence rates of GNSS RFI events.


Author(s):  
Chris Roff ◽  
James R. Henderson ◽  
Damien Clarke ◽  
Marcus C. Walden ◽  
Steve Fitz

1991 ◽  
Vol 112 ◽  
pp. 198-200
Author(s):  
William E. Howard

Occasional interference experienced in the channels of communications satellites has prompted an analysis to see how radio frequency interference (RFI) might be detected from space. RFI may be experienced on any type of satellite, including commercial and scientific satellites. For a satellite in geostationary orbit that interference may come from anywhere in the hemisphere under the satellite. Because the location of an interfering transmitter is so uncertain, traditional means for geolocating it is not effective. “Down-looking” detectors are needed to detect the “up-looking” interference. Moreover, a low cost, simple solution to the problem – one in which the cost to geolocate is small relative to the cost of the downtime in the channel – is required in order to make the solution tractable.


2011 ◽  
Vol 135-136 ◽  
pp. 852-855
Author(s):  
Yin Ping Jiang ◽  
Shan Liu ◽  
Yun Hua Yang

At present, the energy crisis is increasingly serious. Energy-saving becomes a practical issues faced by all fields in the life. Considering this, the paper presents a new vehicle consumption measuring system based on intelligent handling and humane design under the promise of accurate measurement as well as low cost. In addition, the use of radio frequency communication technology makes precise measurement of instant and accumulative fuel consumption come true in any working hours. Field experiment results show that the vehicle fuel consumption measuring system has character of facilitate operation, low cost, advanced and reliable measurement method and high accuracy (within 1.5%). It can improve greatly the production efficiency of the internal combustion machine and avoid effectively the waste phenomenon, and be prone to make further application widely.


2018 ◽  
Vol 60 (7) ◽  
pp. 1798-1803 ◽  
Author(s):  
S. Deepa Nivethika ◽  
B. S. Sreeja ◽  
E. Manikandan ◽  
S. Radha

Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2116
Author(s):  
Wazie M. Abdulkawi ◽  
Khaled Issa ◽  
Abdel-Fattah A. Sheta ◽  
Saleh A. Alshebeili

There is a growing interest in chipless radio-frequency identification (RFID) technology for a number of Internet of things (IoT) applications. This is due to its advantages of being of low-cost, low-power, and fully printable. In addition, it enjoys ease of implementation. In this paper, we present a novel, compact, chipless radio-frequency identification (RFID) tag that can be read with either vertical or horizontal polarization within its frequency bandwidth. This increases the sturdiness and detection ability of the RFID system. In addition, the difference between the vertical and horizontal responses can be used for tag identification. The proposed tag uses strip length variations to double the coding capacity and thereby reduce the overall size by almost 50%. It has a coding capacity of 20 bits in the operating bandwidth 3 GHz–7.5 GHz, and its spatial density is approximately 11 bits/cm2. The proposed tag has a 4.44 bits/GHz spectral capacity, 2.44 bits/cm2/GHz encoding capacity, a spatial density at the center frequency of 358.33 bits/λ2, and an encoding capacity at the center frequency of 79.63 bits/λ2/GHz. A prototype is fabricated and experimentally tested at a distance of 10 cm from the RFID reader system. Then, we compare the measured results with the simulations. The simulated results are in reasonable agreement with the simulated ones.


Sign in / Sign up

Export Citation Format

Share Document