Introduction to Monte Carlo (MC) Method: Random Variables in Stochastic Models

Author(s):  
Bogusław Bieda
2020 ◽  
Vol 26 (3) ◽  
pp. 171-176
Author(s):  
Ilya M. Sobol ◽  
Boris V. Shukhman

AbstractA crude Monte Carlo (MC) method allows to calculate integrals over a d-dimensional cube. As the number N of integration nodes becomes large, the rate of probable error of the MC method decreases as {O(1/\sqrt{N})}. The use of quasi-random points instead of random points in the MC algorithm converts it to the quasi-Monte Carlo (QMC) method. The asymptotic error estimate of QMC integration of d-dimensional functions contains a multiplier {1/N}. However, the multiplier {(\ln N)^{d}} is also a part of the error estimate, which makes it virtually useless. We have proved that, in the general case, the QMC error estimate is not limited to the factor {1/N}. However, our numerical experiments show that using quasi-random points of Sobol sequences with {N=2^{m}} with natural m makes the integration error approximately proportional to {1/N}. In our numerical experiments, {d\leq 15}, and we used {N\leq 2^{40}} points generated by the SOBOLSEQ16384 code published in 2011. In this code, {d\leq 2^{14}} and {N\leq 2^{63}}.


2012 ◽  
Vol 49 (4) ◽  
pp. 1188-1193 ◽  
Author(s):  
Samim Ghamami ◽  
Sheldon M. Ross

The Asmussen–Kroese Monte Carlo estimators of P(Sn > u) and P(SN > u) are known to work well in rare event settings, where SN is the sum of independent, identically distributed heavy-tailed random variables X1,…,XN and N is a nonnegative, integer-valued random variable independent of the Xi. In this paper we show how to improve the Asmussen–Kroese estimators of both probabilities when the Xi are nonnegative. We also apply our ideas to estimate the quantity E[(SN-u)+].


2013 ◽  
Vol 12 ◽  
pp. 39-44 ◽  
Author(s):  
Kaspar Vereide ◽  
Leif Lia ◽  
Laras Ødegård

Investments in hydropower pumped storage projects (PSP) are subjected to a high degree of uncertainty. In addition to normal uncertainties in hydropower schemes, the profit of a pumped storage scheme is dependent on the margin between power prices for buying and selling, which is difficult to predict without a power purchase agreement (PPA). A PSP without a PPA and without known construction costs requires quantification of the uncertainties in order to make qualified decisions before investing in such projects. This article demonstrates the advantages of using Monte Carlo (MC) simulations as a tool in the economic analysis of PSPs. The method has been tested on a case study, namely the Tamakoshi-3 Hydropower Project (HPP) in Nepal. The MC method is used to calculate the probability distribution of the net present value of installing reversible units in the Tamakoshi-3 HPP. The calculations show that PSPs may be profitable in Nepal, given a beneficial development of the power market. The MC method is considered to be a useful tool for economic analysis of PSPs. In this case study of installing reversible units in the Tamakoshi-3 HPP, there are many uncertainties, which the MC simulation method is able to quantify. Hydro Nepal; Journal of Water, Energy and Environment Vol. 12, 2013, January Page: 39-44DOI: http://dx.doi.org/10.3126/hn.v12i0.9031 Uploaded Date : 10/29/2013


2020 ◽  
Author(s):  
Peter J. Hammond ◽  
Lei Qiao ◽  
Yeneng Sun

Abstract Monte Carlo simulation is used in Hammond and Sun (Econ Theory 36:303–325, 2008. 10.1007/s00199-007-0279-7) to characterize a standard stochastic framework involving a continuum of random variables that are conditionally independent given macro shocks. This paper presents some general properties of such Monte Carlo sampling processes, including their one-way Fubini extension and regular conditional independence. In addition to the almost sure convergence of Monte Carlo simulation considered in Hammond and Sun (2008), here we also consider norm convergence when the random variables are square integrable. This leads to a necessary and sufficient condition for the classical law of large numbers to hold in a general Hilbert space. Applying this analysis to large economies with asymmetric information shows that the conflict between incentive compatibility and Pareto efficiency is resolved asymptotically for almost all sampling economies, following some similar results in McLean and Postlewaite (Econometrica 70:2421–2453, 2002) and Sun and Yannelis (J Econ Theory 134:175–194, 2007. 10.1016/j.jet.2006.03.001).


1988 ◽  
Vol 2 (1) ◽  
pp. 75-93 ◽  
Author(s):  
E. G. Coffman ◽  
L. Flatto ◽  
I. Mitrani ◽  
L. A. Shepp ◽  
C. Knessl

We study a model of queue storage in which items (requests for single units of storage) arrive in a Poisson stream and are accommodated by the first available location in a linear scan of storage. The processing times of items are independent, exponentially distributed random variables. The set of occupied locations (identified by their indices) at time t forms a random subset Si, of [1,2,.…]. The extent of the fragmentation in Si, i.e., the alternating holes and occupied regions of storage, is measured by Wt, = max St, – |St|.


2014 ◽  
Vol 487 ◽  
pp. 465-469
Author(s):  
Wen Feng Duan ◽  
Chang Liu

Reinforced concrete eccentric compression member is one of the most common structural member. Eccentric compression members are divided into large eccentric compression members and small eccentric compression members. Uncertainty of calculation, geometric size and concrete strength were considered as random variables, the reliability of eccentric compression members were discussed by monte carlo simulation.


1980 ◽  
Vol 17 (01) ◽  
pp. 145-153 ◽  
Author(s):  
H. Solomon ◽  
M. A. Stephens

Many random variables arising in problems of geometric probability have intractable densities, and it is very difficult to find probabilities or percentage points based on these densities. A simple approximation, a generalization of the chi-square distribution, is suggested, to approximate such densities; the approximation uses the first three moments. These may be theoretically derived, or may be obtained from Monte Carlo sampling. The approximation is illustrated on random variables (the area, the perimeter, and the number of sides) associated with random polygons arising from two processes in the plane. Where it can be checked theoretically, the approximation gives good results. It is compared also with Pearson curve fits to the densities.


Sign in / Sign up

Export Citation Format

Share Document