A Case Study on the Effect of Land-Use Characteristics on Damages Caused by Natural Hazards in South Korea

Author(s):  
Jae Heon Shim ◽  
Kwang-Woo Nam ◽  
Sung-Ho Lee
Keyword(s):  
Land Use ◽  
2016 ◽  
Vol 170 ◽  
pp. 157-166 ◽  
Author(s):  
Sung-Wook Yun ◽  
Philippe C. Baveye ◽  
Kweon-Bo Kim ◽  
Dong-Hyeon Kang ◽  
Si-Young Lee ◽  
...  

2020 ◽  
Vol 12 (3) ◽  
pp. 354 ◽  
Author(s):  
Seula Park ◽  
Ahram Song

The non-spatial information of cadastral maps must be repeatedly updated to monitor recent changes in land property and to detect illegal land registrations by tax evaders. Since non-spatial information, such as land category, is usually updated by field-based surveys, it is time-consuming and only a limited area can be updated at a time. Although land categories can be updated by remote sensing techniques, the update is typically performed through manual analysis, namely through a visually interpreted comparison between the newly generated land information and the existing cadastral maps. A cost-effective, fast alternative to the current surveying methods would improve the efficiency of land management. For this purpose, the present study analyzes the discrepancy between the existing cadastral map and the actual land use. Our proposed method operates in two steps. First, an up-to-date land cover map is generated from hyperspectral unmanned aerial vehicle (UAV) images. These images are effectively classified by a hybrid two- and three-dimensional convolutional neural network. Second, a discrepancy map, which contains the ratio of the area that is being used differently from the registered land use in each parcel, is constructed through a three-stage inconsistency comparison. As a case study, the proposed method was evaluated using hyperspectral UAV images acquired at two sites of Jeonju in South Korea. The overall classification accuracies of six land classes at Sites 1 and 2 were 99.93% and 99.75% and those at Sites 1 and 2 are 39.4% and 34.4%, respectively, which had discrepancy ratios of 50% or higher. Finally, discrepancy maps between the land cover maps and existing cadastral maps were generated and visualized. The method automatically reveals the inconsistent parcels requiring updates of their land category. Although the performance of the proposed method depends on the classification results obtained from UAV imagery, the method allows a flexible modification of the matching criteria between the land categories and land coverage. Therefore, it is generalizable to various cadastral systems and the discrepancy ratios will provide practical information and significantly reduce the time and effort for land monitoring and field surveying.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2043
Author(s):  
Hanyong Lee ◽  
Hyun-Seok Choi ◽  
Min-Suh Chae ◽  
Youn-Shik Park

Changes in both land use and rainfall patterns can lead to changes in the hydrologic behavior of the watershed. The long-term hydrologic impact analysis (L-THIA) model has been used to predict such changes and analyze the changes in mitigation scenarios. The model is simple as only a small amount of input data are required, but it can predict only the direct runoff and cannot determine the streamflow. This study, therefore, aimed to propose a method for predicting the monthly baseflow while maintaining the simplicity of the model. The monthly baseflows for 20 watersheds in South Korea were estimated under different land use conditions. Calibration of the monthly baseflow prediction method produced values for R2 and the Nash–Sutcliffe efficiency (NSE) within the ranges of 0.600–0.817 and 0.504–0.677, respectively; during validation, these values were in the ranges of 0.618–0.786 and 0.567–0.727, respectively. This indicates that the proposed method can reliably predict the monthly baseflow while maintaining the simplicity of the L-THIA model. The proposed model is expected to be applicable to all the various forms of the model.


2017 ◽  
Vol 04 (03) ◽  
pp. 272-277
Author(s):  
Tawhida A. Yousif ◽  
Nancy I. Abdalla ◽  
El-Mugheira M. Ibrahim ◽  
Afraa M. E. Adam

Sign in / Sign up

Export Citation Format

Share Document