Evolutionary Multi-objective Optimization Based Proportional Integral Controller Design for Induction Motor Drive

Author(s):  
Moulay Rachid Douiri ◽  
Mohamed Cherkaoui
Author(s):  
Moulay Rachid Douiri ◽  
Ouissam Belghazi ◽  
Mohamed Cherkaoui

This study presents a novel neuro-fuzzy (NF)-based auto-tuning proportional integral controller (NFATPI) for accurate speed control, and to ensure optimal drive performances of the indirect field controlled induction motor drive, under system disturbances and uncertainties. The training mechanism of the proposed NF have been developed and illustrated through mathematical formulations. Then, the NF parameters have been updated on-line using a suitable training algorithm. The learning rates of the NF are derived on the basis of the discrete Lyapunov function is also illustrated, in order to confirm the stability and the performance of prediction of the proposed NFATPI. The simulation results confirm the effectiveness of the strategy NFATPI as a robust controller for high performance industrial motor drive systems.


Author(s):  
Mikuláš Huba ◽  
Igor Bélai

This article presents design and evaluation of filtered proportional–integral controllers and filtered Smith predictor–inspired constrained dead time compensators. Both are based on the integral plus dead time and on the first-order time delayed plant models. They are compared as for tuning simplicity, robustness and noise attenuation. Such a comparison, which presents a robustness test regarding the importance of the internal plant feedback approximation, may be carried out by performance measures built on deviations of the input and output transient responses from their ideal shapes. When combined with integral of absolute error measures of both solution types with the disturbance responses set as nearly equivalent, we can see that the filtered Smith predictor setpoint responses may be significantly faster than the filtered proportional–integral controller responses, more robust and, using higher-order filters, also sufficiently smooth. Furthermore, tuning of the possibly higher-order filters for filtered Smith predictor is simpler. Its overall design is more transparent and straightforward with respect to the control constraints, where the filtered Smith predictor requires some additional anti-windup measures.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Yung-Chang Luo ◽  
Zhi-Sheng Ke ◽  
Ying-Piao Kuo

A sensorless rotor-field oriented control induction motor drive with particle swarm optimization algorithm speed controller design strategy is presented. First, the rotor-field oriented control scheme of induction motor is established. Then, the current-and-voltage serial-model rotor-flux estimator is developed to identify synchronous speed for coordinate transformation. Third, the rotor-shaft speed on-line estimation is established applying the model reference adaptive system method based on estimated rotor-flux. Fourth, the speed controller of sensorless induction motor drive is designed using particle swarm optimization algorithm. Simulation and experimental results confirm the effectiveness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document