Concrete Dams: From Failure Modes to Seismic Fragility

Author(s):  
M. A. Hariri-Ardebili
2021 ◽  
Author(s):  
Yohei Ono ◽  
Michiya Sakai ◽  
Ryuya Shimazu ◽  
Shinichi Matsuura

2016 ◽  
Vol 128 ◽  
pp. 374-399 ◽  
Author(s):  
Mohammad Amin Hariri-Ardebili ◽  
Victor E. Saouma

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Junhong Huan ◽  
Donghui Ma ◽  
Wei Wang

The paper proposes an innovative method of analyzing the seismic fragility of ancient timber architecture. The method is based on the Copulas, in which correlation between different failure modes is considered. This method is applied to assess the vulnerability of ancient timber architecture in Ming dynasty. The assessment includes four steps. In the first step, the incremental dynamic analysis is employed to establish seismic vulnerability curves of different failure modes for the structure. After that, Copula joint distribution function is used to analyze the correlation among different failure modes. In the third step, fragility curves considering correlation among different failure modes are established. In the last step, the fragility curves are compared with those obtained by first-order bound method. The results show that seismic vulnerability of ancient timber architecture based on the Copulas is greater than that of any single failure modes. Moreover, the occurrence probability ranges between the upper and lower boundaries of the first-order bound method, but is close to the lower boundary.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Shinyoung Kwag ◽  
BuSeog Ju ◽  
Wooyoung Jung

The purpose of this study is to investigate the soil-structure interaction (SSI) effect on the overall risk of a PWR containment building structure with respect to two failure modes: strength and displacement. The precise quantification of the risk within the seismic probabilistic risk assessment framework depends considerably on an accurate treatment of the seismic response analysis. The SSI effect is one of the critical factors to consider when accurately predicting structural responses in the event of an earthquake. Previous studies have been conducted by focusing more on the positive side of the SSI effects and the effects mainly on the seismic fragility result. Therefore, this paper presents the results of a study of the SSI effect on the overall risk. Also, the study relies on an emphasis on revealing a beneficial and a detrimental effect of the SSI by utilizing an example of the containment structure in three soil conditions and two main failure modes. As a result, the consideration of SSI shows a complete conflicting effect on the seismic fragility and risk results depending on two failure modes considered in this study. This has a positive effect regarding the strength failure mode, but this brings a negative effect regarding the displacement failure mode. The risk fluctuation width is particularly noticeable in the site having a considerable change in seismic hazard information such as Los Angeles on the western site of the US. Such results can be expected to be utilized in a future study for investigating the pros and cons of the SSI effect associated with various failure modes in diverse conditions.


Author(s):  
Konstantinos Bakalis ◽  
Dimitrios Vamvatsikos ◽  
Michalis Fragiadakis

A seismic fragility assessment procedure is developed for atmospheric steel liquid storage tanks. Appropriate system and component-level damage states are defined by identifying the failure modes that may occur during a strong ground motion. Special attention is paid to the elephant’s foot buckling failure mode, where the estimation of the associated capacity and demand requires thorough consideration within a probabilistic framework. A novel damage state is introduced to existing procedures with respect to the uncontrollable loss of containment scenario. Fragility curves are estimated by introducing both aleatory and epistemic sources of uncertainty, thus providing a comprehensive methodology for the seismic risk assessment of liquid storage tanks. The importance of dynamic buckling is acknowledged and the issue of non-sequential damage states is finally revealed.


2020 ◽  
Vol 5 (2) ◽  
pp. 19 ◽  
Author(s):  
Richard Malm ◽  
Rikard Hellgren ◽  
Jonas Enzell

Dams located in cold areas are subjected to large seasonal temperature variations and many concrete dams have cracked as a result. In the 14th International Commission on Large Dams (ICOLD) Benchmark Workshop, a case study was presented where contributors should predict the cracking and displacements due to seasonal variations. In this paper, the conclusions from this case study are presented. Overall, the results from the contributors are well in line with the observations that can be made on the dam and the measurements performed. This shows that using non-linear numerical models is a suitable tool to accurately predict cracking and estimate the displacements of cracked dams. This case study also highlighted important aspects that need special consideration in order to obtain realistic results that can be used to predict the crack pattern, these being: (1) the importance of performing transient thermal analyses based on robin boundary conditions; (2) the influence of contact formulation between the concrete dam and the foundation; and (3) the use of realistic non-linear material properties. The results and conclusions presented in this paper constitute one important step in achieving best practices to estimate dam safety and better understand the potential failure modes and ageing of concrete dams.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Hoang Nam Phan ◽  
Fabrizio Paolacci ◽  
Silvia Alessandri

Catastrophic failure of the above ground steel storage tanks was observed during past earthquakes, which caused serious economic and environmental consequences. Many of the existing tanks were designed in the past with outdated analysis methods and with underestimated seismic loads. Therefore, the evaluation of the seismic vulnerability of these tanks, especially ones located in seismic prone areas, is extremely important. Seismic fragility functions are useful tools to quantify the seismic vulnerability of structures in the framework of probabilistic seismic risk assessment. These functions give the probability that a seismic demand on a given structural component meets or exceeds its capacity. The objective of this study is to examine the seismic vulnerability of an unanchored steel storage tank, considering the uncertainty of modeling parameters that are related to material and geometric properties of the tank. The significance of uncertain modeling parameters is first investigated with a screening study, which is based on nonlinear static pushover analyses of the tank using the abaqus software. In this respect, a fractional factorial design and an analysis of variance (ANOVA) have been adopted. The results indicate that the considered modeling parameters have significant effects on the uplift behavior of the tank. The fragility curves of two critical failure modes, i.e., the buckling of the shell plate and the plastic rotation of the shell-to-bottom plate joint, are then developed based on a simplified model of the tank, where the uplift behavior is correctly modeled from the static pushover analysis. The uncertainty associated with the significant parameters previously identified are considered in the fragility analysis using a sampling procedure to generate statistically significant samples of the model. The relative importance of different treatment levels of the uncertainty on the fragility curves of the tank is assessed and discussed in detail.


2020 ◽  
Vol 5 (3) ◽  
pp. 22 ◽  
Author(s):  
Giacomo Sevieri ◽  
Anna De Falco ◽  
Giovanni Marmo

The seismic risk assessment of existing concrete gravity dams is of primary importance for our society because of the fundamental role of these infrastructures in the sustainability of a country. The seismic risk assessment of dams is a challenging task due to the lack of case histories, such as gravity dams’ seismic collapses, which hinders the definition of limit states, thus making the application of any conventional safety assessment approach difficult. Numerical models are then fundamental to predict the seismic behaviour of the complex dam-soil-reservoir interacting system, even though uncertainties strongly affect the results. These uncertainties, mainly related to mechanical parameters and variability of the seismic motion, are among the reasons that, so far, prevented the performance-based earthquake engineering approach from being applied to concrete dams. This paper discusses the main issues behind the application of the performance-based earthquake engineering to existing concrete dams, with particular emphasis on the fragility analysis. After a critical review of the most relevant studies on this topic, the analysis of an Italian concrete gravity dam is presented to show the effect of epistemic uncertainties on the calculation of seismic fragility curves. Finally, practical conclusions are derived to guide professionals to the reduction of epistemic uncertainties, and to the definition of reliable numerical models.


2015 ◽  
Vol 45 (6) ◽  
pp. 979-997 ◽  
Author(s):  
Mohammad Amin Hariri-Ardebili ◽  
Victor. E. Saouma ◽  
Keith A. Porter

2014 ◽  
Vol 31 (1) ◽  
pp. 18-32 ◽  
Author(s):  
Jianwen Pan ◽  
Yuntian Feng ◽  
Feng Jin ◽  
Chuhan Zhang ◽  
David Roger Jones Owen

Purpose – There is not a unified modelling approach to finite element failure analysis of concrete dams. Different behaviours of a dam predicted by different fracture methods with various material constitutive models may significantly influence on the dam safety evaluation. The purpose of this paper is to present a general comparative investigation to examine whether the nonlinear responses of concrete dams obtained from different fracture modelling approaches are comparable in terms of crack propagation and failure modes. Design/methodology/approach – Three fracture modelling approaches, including the extended finite element method with a cohesive law (XFEM-COH), the crack band finite element method with a plastic-damage relation (FEPD), and the Drucker-Prager (DP) elasto-plastic model, are chosen to analyse damage and cracking behaviour of concrete gravity dams under overloading conditions. The failure process and loading capacity of a dam are compared. Findings – The numerical results indicate that the three approaches are all applicable to predict loading capacity and safety factors of gravity dams. However, both XFEM-COH and FEPD give more reasonable crack propagation and failure modes in comparison with DP. Therefore, when cracking patterns are the major concern for safety evaluation of concrete dams, it is recommended that XFEM-COH and FEPD rather than DP be used. Originality/value – The comparison of cracking behaviours of concrete dams obtained from different fracture modelling approaches is conducted. The applicability of the modelling approaches for failure analysis of concrete dams is discussed, and from the results presented in this work, it is significant to consider the suitability of the selected fracture modelling approach for dam safety evaluation.


Sign in / Sign up

Export Citation Format

Share Document