Effect of Failure Modes on Seismic Fragility Assessment of Carbon Steel Elbow Pipe

2021 ◽  
Author(s):  
Yohei Ono ◽  
Michiya Sakai ◽  
Ryuya Shimazu ◽  
Shinichi Matsuura
Author(s):  
Tomasz Tkaczyk ◽  
Daniil Vasilikis ◽  
Aurelien Pepin

Abstract The high demand for subsea transportation of corrosive wellhead produced fluids has created interest in economical mechanically lined pipes (MLP) made of external carbon steel and a thin internal layer of corrosion resistant alloy (CRA). The bending strain capacity of an MLP, where a CRA liner is adhered to a carbon steel host pipe by means of an interference fit, is often governed by the liner wrinkling limit state. Although the strain capacity of the MLP with a typical 3 mm thick liner is enough to withstand bending to strains encountered during installation with the S-lay or J-lay method, the liner is at risk of wrinkling when the MLP is subjected to higher bending strains during reel-lay. To allow reeled installation, the liner strain capacity is enhanced by either increasing the liner thickness or pressurizing the MLP during installation. In the former approach, the required liner thickness is proportional to the pipe diameter. For larger diameter MLPs, it is therefore often more economical to select a 3 mm thick liner and flood and pressurize an MLP to ensure liner stability during reeling. However, the MLP may need to be depressurized and partially drained during installation to allow welding a structure, performing reel-to-reel connection or pipeline recovery which impose bending strain on a plastically pre-strained and depressurized pipeline. Furthermore, reeled pipelines may be depressurized subsea while subjected to bending loads from operation. Although there is a history of research into the limit loads and failure modes of MLPs, there is still no comprehensive guidance on determining the risk of liner wrinkling in plastically pre-strained MLPs. In this paper, an approach is proposed for evaluating the strain capacity and assessing the risk of liner wrinkling after an MLP, subjected to plastic bending during reeled installation at elevated pressure, is depressurized and subjected to installation loads during offshore intervention or operational loading in service. The combined effect of strain history at elevated pressure, reeling-induced ovality, bending direction after depressurization, differential pressure, temperature and residual strain is discussed. The recommendations for further work are also given.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Junhong Huan ◽  
Donghui Ma ◽  
Wei Wang

The paper proposes an innovative method of analyzing the seismic fragility of ancient timber architecture. The method is based on the Copulas, in which correlation between different failure modes is considered. This method is applied to assess the vulnerability of ancient timber architecture in Ming dynasty. The assessment includes four steps. In the first step, the incremental dynamic analysis is employed to establish seismic vulnerability curves of different failure modes for the structure. After that, Copula joint distribution function is used to analyze the correlation among different failure modes. In the third step, fragility curves considering correlation among different failure modes are established. In the last step, the fragility curves are compared with those obtained by first-order bound method. The results show that seismic vulnerability of ancient timber architecture based on the Copulas is greater than that of any single failure modes. Moreover, the occurrence probability ranges between the upper and lower boundaries of the first-order bound method, but is close to the lower boundary.


2018 ◽  
Vol 2018 ◽  
pp. 1-18 ◽  
Author(s):  
Shinyoung Kwag ◽  
BuSeog Ju ◽  
Wooyoung Jung

The purpose of this study is to investigate the soil-structure interaction (SSI) effect on the overall risk of a PWR containment building structure with respect to two failure modes: strength and displacement. The precise quantification of the risk within the seismic probabilistic risk assessment framework depends considerably on an accurate treatment of the seismic response analysis. The SSI effect is one of the critical factors to consider when accurately predicting structural responses in the event of an earthquake. Previous studies have been conducted by focusing more on the positive side of the SSI effects and the effects mainly on the seismic fragility result. Therefore, this paper presents the results of a study of the SSI effect on the overall risk. Also, the study relies on an emphasis on revealing a beneficial and a detrimental effect of the SSI by utilizing an example of the containment structure in three soil conditions and two main failure modes. As a result, the consideration of SSI shows a complete conflicting effect on the seismic fragility and risk results depending on two failure modes considered in this study. This has a positive effect regarding the strength failure mode, but this brings a negative effect regarding the displacement failure mode. The risk fluctuation width is particularly noticeable in the site having a considerable change in seismic hazard information such as Los Angeles on the western site of the US. Such results can be expected to be utilized in a future study for investigating the pros and cons of the SSI effect associated with various failure modes in diverse conditions.


2007 ◽  
Vol 345-346 ◽  
pp. 1349-1352 ◽  
Author(s):  
Seok Hwan Ahn ◽  
Kum Cheol Seok ◽  
Ki Woo Nam

The locally wall thinned phenomenon of pipes is simulated as metal loss due to erosion/corrosion. Therefore, fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear power plant. In this study, monotonic bending tests without internal pressure are conducted on 1.91-inch diameter Schedule 80 STS370 full-scale carbon steel pipe specimens. We investigated fracture strengths and failure modes of locally wall thinned pipes that welded and unwelded by four point bending test. From test results, we could be divided three types of failure modes.


Author(s):  
Konstantinos Bakalis ◽  
Dimitrios Vamvatsikos ◽  
Michalis Fragiadakis

A seismic fragility assessment procedure is developed for atmospheric steel liquid storage tanks. Appropriate system and component-level damage states are defined by identifying the failure modes that may occur during a strong ground motion. Special attention is paid to the elephant’s foot buckling failure mode, where the estimation of the associated capacity and demand requires thorough consideration within a probabilistic framework. A novel damage state is introduced to existing procedures with respect to the uncontrollable loss of containment scenario. Fragility curves are estimated by introducing both aleatory and epistemic sources of uncertainty, thus providing a comprehensive methodology for the seismic risk assessment of liquid storage tanks. The importance of dynamic buckling is acknowledged and the issue of non-sequential damage states is finally revealed.


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 979 ◽  
Author(s):  
Margherita Pauletta ◽  
Nicola Rovere ◽  
Norbert Randl ◽  
Gaetano Russo

Maintenance of reinforced concrete structures is a prevailing topic, especially with regard to lifeline structures and bridges, many of which are now designed with a service life beyond 100 years. Reinforcement made of ordinary (carbon) steel may corrode in aggressive environments. Stainless steel, being much more resistant to corrosion, is a valid solution to facilitate the protection of the works, increasing the service life and reducing the need for repair and maintenance. Despite the potential for stainless steel to reduce maintenance costs, studies investigating the influence of stainless steel on the behavior of reinforced concrete structures are limited. This study investigated the bond behavior of stainless steel rebars by means of experimental tests on reinforced concrete specimens with different concrete cover thicknesses, concrete strengths, and bar diameters. In each case, identical specimens with carbon steel reinforcement were tested for comparison. The failure modes of the specimens were examined, and a bond stress–slip relationship for stainless steel bars was established. This research shows that the bond behavior of stainless steel rebars is comparable to that of carbon steel bars.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Hoang Nam Phan ◽  
Fabrizio Paolacci ◽  
Silvia Alessandri

Catastrophic failure of the above ground steel storage tanks was observed during past earthquakes, which caused serious economic and environmental consequences. Many of the existing tanks were designed in the past with outdated analysis methods and with underestimated seismic loads. Therefore, the evaluation of the seismic vulnerability of these tanks, especially ones located in seismic prone areas, is extremely important. Seismic fragility functions are useful tools to quantify the seismic vulnerability of structures in the framework of probabilistic seismic risk assessment. These functions give the probability that a seismic demand on a given structural component meets or exceeds its capacity. The objective of this study is to examine the seismic vulnerability of an unanchored steel storage tank, considering the uncertainty of modeling parameters that are related to material and geometric properties of the tank. The significance of uncertain modeling parameters is first investigated with a screening study, which is based on nonlinear static pushover analyses of the tank using the abaqus software. In this respect, a fractional factorial design and an analysis of variance (ANOVA) have been adopted. The results indicate that the considered modeling parameters have significant effects on the uplift behavior of the tank. The fragility curves of two critical failure modes, i.e., the buckling of the shell plate and the plastic rotation of the shell-to-bottom plate joint, are then developed based on a simplified model of the tank, where the uplift behavior is correctly modeled from the static pushover analysis. The uncertainty associated with the significant parameters previously identified are considered in the fragility analysis using a sampling procedure to generate statistically significant samples of the model. The relative importance of different treatment levels of the uncertainty on the fragility curves of the tank is assessed and discussed in detail.


Energies ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3269
Author(s):  
Gyeong-Hoi Koo ◽  
Shinyoung Kwag ◽  
Hyun-Suk Nam

The main purpose of this study is to investigate the feasibility of the seismic fragility analysis (FA) with the strain-based failure modes for the nuclear metal components retaining pressure boundary. Through this study, it is expected that we can find analytical ways to enhance the high confidence of low probability of failure (HCLPF) capacity potentially contained in the conservative seismic design criteria required for the nuclear metal components. Another goal is to investigate the feasibility of the seismic FA to be used as an alternative seismic design rule for beyond-design-basis earthquakes. To do this, the general procedures of the seismic FA using the inelastic seismic analysis for the nuclear metal components are investigated. Their procedures are described in detail by the exampled calculations for the surge line nozzles connecting hot leg piping and the pressurizer, known as one of the seismic fragile components in NSSS (Nuclear Steam Supply System). To define the seismic failure modes for the seismic FA, the seismic strain-based design criteria, with two seismic acceptance criteria against the ductile fracture failure mode and fatigue-induced failure mode, are used in order to reduce the conservatism contained in the conventional stress-based seismic design criteria. In the exampled calculation of the inelastic seismic strain response beyond an elastic regime, precise inelastic seismic analyses with Chaboche’s kinematic and Voce isotropic hardening material models are used. From the results of the seismic FA by the probabilistic approach for the exampled target component, it is confirmed that the approach of the strain-based seismic FA can extract the maximum seismic capacity of the nuclear metal components with more accurate inelastic seismic analysis minimizing the number of variables for the components.


Sign in / Sign up

Export Citation Format

Share Document