Energy Characterization of Data Mining Algorithms on Mobile Devices

Author(s):  
Carmela Comito ◽  
Domenico Talia
2009 ◽  
pp. 2000-2009
Author(s):  
J. J. Dolado ◽  
D. Rodríguez ◽  
J. Riquelme ◽  
F. Ferrer-Troyano ◽  
J. J. Cuadrado

One of the problems found in generic project databases, where the data is collected from different organizations, is the large disparity of its instances. In this chapter, we characterize the database selecting both attributes and instances so that project managers can have a better global vision of the data they manage. To achieve that, we first make use of data mining algorithms to create clusters. From each cluster, instances are selected to obtain a final subset of the database. The result of the process is a smaller database which maintains the prediction capability and has a lower number of instances and attributes than the original, yet allow us to produce better predictions.


Author(s):  
Amol Ghoting ◽  
Gregory Buehrer ◽  
Srinivasan Parthasarathy ◽  
Daehyun Kim ◽  
Anthony Nguyen ◽  
...  

Author(s):  
J. J. Dolado ◽  
D. Rodríguez ◽  
J. Riquelme ◽  
F. Ferrer-Troyano ◽  
J. J. Cuadrado

One of the problems found in generic project databases, where the data is collected from different organizations, is the large disparity of its instances. In this chapter, we characterize the database selecting both attributes and instances so that project managers can have a better global vision of the data they manage. To achieve that, we first make use of data mining algorithms to create clusters. From each cluster, instances are selected to obtain a final subset of the database. The result of the process is a smaller database which maintains the prediction capability and has a lower number of instances and attributes than the original, yet allow us to produce better predictions.


2019 ◽  
Vol 14 (1) ◽  
pp. 21-26 ◽  
Author(s):  
Viswam Subeesh ◽  
Eswaran Maheswari ◽  
Hemendra Singh ◽  
Thomas Elsa Beulah ◽  
Ann Mary Swaroop

Background: The signal is defined as “reported information on a possible causal relationship between an adverse event and a drug, of which the relationship is unknown or incompletely documented previously”. Objective: To detect novel adverse events of iloperidone by disproportionality analysis in FDA database of Adverse Event Reporting System (FAERS) using Data Mining Algorithms (DMAs). Methodology: The US FAERS database consists of 1028 iloperidone associated Drug Event Combinations (DECs) which were reported from 2010 Q1 to 2016 Q3. We consider DECs for disproportionality analysis only if a minimum of ten reports are present in database for the given adverse event and which were not detected earlier (in clinical trials). Two data mining algorithms, namely, Reporting Odds Ratio (ROR) and Information Component (IC) were applied retrospectively in the aforementioned time period. A value of ROR-1.96SE>1 and IC- 2SD>0 were considered as the threshold for positive signal. Results: The mean age of the patients of iloperidone associated events was found to be 44years [95% CI: 36-51], nevertheless age was not mentioned in twenty-one reports. The data mining algorithms exhibited positive signal for akathisia (ROR-1.96SE=43.15, IC-2SD=2.99), dyskinesia (21.24, 3.06), peripheral oedema (6.67,1.08), priapism (425.7,9.09) and sexual dysfunction (26.6-1.5) upon analysis as those were well above the pre-set threshold. Conclusion: Iloperidone associated five potential signals were generated by data mining in the FDA AERS database. The result requires an integration of further clinical surveillance for the quantification and validation of possible risks for the adverse events reported of iloperidone.


Author(s):  
Ari Fadli ◽  
Azis Wisnu Widhi Nugraha ◽  
Muhammad Syaiful Aliim ◽  
Acep Taryana ◽  
Yogiek Indra Kurniawan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document