A unified design procedure

Author(s):  
Torsten Bohlin
Author(s):  
Roberto Strada ◽  
Bruno Zappa ◽  
Hermes Giberti

“Flying machining” represents synchronization of an axis (slave) with a master axis in motion. One of the most important aspects of the design of “flying machining” operation is the choice of the proper law of motion of the slave axis. In literature, technical reports and papers can be found concerning this subject, but they deal with specific problems and the solutions or suggestions proposed are specific as well, suitable for those cases. In order to try to overcome this limitation, in this paper we analyze the subject of the flying machining operations from a wider point of view. We propose a unified design procedure with general validity, suitable for the choice of the slave axis’ law of motion for whatever “flying machining” operation. Furthermore methodologies for the selection of the drive system will be proposed. The procedure is described applying it on a cross sealing operation, typical of wrapping machine.


2010 ◽  
Vol 102 ◽  
pp. 249-265 ◽  
Author(s):  
Mariusz Pergol ◽  
Wlodzimierz Zieniutycz

2011 ◽  
Vol 39 (4) ◽  
pp. 223-244 ◽  
Author(s):  
Y. Nakajima

Abstract The tire technology related with the computational mechanics is reviewed from the standpoint of yesterday, today, and tomorrow. Yesterday: A finite element method was developed in the 1950s as a tool of computational mechanics. In the tire manufacturers, finite element analysis (FEA) was started applying to a tire analysis in the beginning of 1970s and this was much earlier than the vehicle industry, electric industry, and others. The main reason was that construction and configurations of a tire were so complicated that analytical approach could not solve many problems related with tire mechanics. Since commercial software was not so popular in 1970s, in-house axisymmetric codes were developed for three kinds of application such as stress/strain, heat conduction, and modal analysis. Since FEA could make the stress/strain visible in a tire, the application area was mainly tire durability. Today: combining FEA with optimization techniques, the tire design procedure is drastically changed in side wall shape, tire crown shape, pitch variation, tire pattern, etc. So the computational mechanics becomes an indispensable tool for tire industry. Furthermore, an insight to improve tire performance is obtained from the optimized solution and the new technologies were created from the insight. Then, FEA is applied to various areas such as hydroplaning and snow traction based on the formulation of fluid–tire interaction. Since the computational mechanics enables us to see what we could not see, new tire patterns were developed by seeing the streamline in tire contact area and shear stress in snow in traction.Tomorrow: The computational mechanics will be applied in multidisciplinary areas and nano-scale areas to create new technologies. The environmental subjects will be more important such as rolling resistance, noise and wear.


2018 ◽  
Vol 14 (1) ◽  
pp. 6057-6061 ◽  
Author(s):  
Padmanaban M S ◽  
J Sreerambabu

A piled raft foundation consists of a thick concrete slab reinforced with steel which covers the entire contact area of the structure, in which the raft is supported by a group of piles or a number of individual piles. Bending moment on raft, differential and average settlement, pile and raft geometries are the influencing parameters of the piled raft foundation system. In this paper, a detailed review has been carried out on the issues on the raft foundation design. Also, the existing design procedure was explained.


Sign in / Sign up

Export Citation Format

Share Document