Volume 2: Applied Fluid Mechanics; Electromechanical Systems and Mechatronics; Advanced Energy Systems; Thermal Engineering; Human Factors and Cognitive Engineering
Latest Publications


TOTAL DOCUMENTS

100
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791844854

Author(s):  
Sunita Kruger ◽  
Leon Pretorius

In this paper, the use of computational fluid dynamics is evaluated as a design tool to investigate the indoor climate of a confined greenhouse. The finite volume method using polyhedral cells is used to solve the governing mass, momentum and energy equations. Natural convection in a cavity corresponding to a mono-span venlo-type greenhouse is numerically investigated using Computational Fluid Dynamics. The CFD model is designed so as to simulate the climate above a plant canopy in an actual multi-span greenhouse heated by solar radiation. The aim of this paper is to investigate the influence of various design parameters such as pitch angle and roof asymmetry and on the velocity and temperature patterns inside a confined single span greenhouse heated from below. In the study reported in this paper a two-dimensional CFD model was generated for the mono-span venlo-type greenhouse, and a mesh sensitivity analysis was conducted to determine the mesh independence of the solution. Similar two-dimensional flow patterns were observed in the obtained CFD results as the experimental results reported by Lamrani et al [2]. The CFD model was then modified and used to explore the effect of roof pitch angle and roof asymmetry at floor level on the development of the flow and temperature patterns inside the cavity for various Rayleigh numbers. Results are presented in the form of vector and contour plots. It was found that considerable temperature and velocity gradients were observed in the centre of the greenhouse for each case in the first 40mm above the ground, as well as in the last 24mm close to the roof. Results also indicated that the Rayleigh number did not have a significant impact on the flow and temperature patterns inside the greenhouse, although roof angle and asymmetry did. The current results demonstrate the importance of CFD as a design tool in the case of greenhouse design.


Author(s):  
Roberto Strada ◽  
Bruno Zappa ◽  
Hermes Giberti

“Flying machining” represents synchronization of an axis (slave) with a master axis in motion. One of the most important aspects of the design of “flying machining” operation is the choice of the proper law of motion of the slave axis. In literature, technical reports and papers can be found concerning this subject, but they deal with specific problems and the solutions or suggestions proposed are specific as well, suitable for those cases. In order to try to overcome this limitation, in this paper we analyze the subject of the flying machining operations from a wider point of view. We propose a unified design procedure with general validity, suitable for the choice of the slave axis’ law of motion for whatever “flying machining” operation. Furthermore methodologies for the selection of the drive system will be proposed. The procedure is described applying it on a cross sealing operation, typical of wrapping machine.


Author(s):  
Ibrahim Chamseddine ◽  
Hadi Kasab ◽  
Maya Antoun ◽  
Tawfiq Dahdah ◽  
Mohammed Mirhi ◽  
...  

A MEMS RF switch is expected to undergo 10 billion switching cycles before failure. Until complete physical explanation for these failure modes that include contact adhesion, damping effects, stiction, increases in resistance with time, dielectric breakdown, and electron trapping is fully established, the technology’s numerous advantages cannot be harvested reliably and efficiently. This paper investigates prospective solutions to problems in switch designs by proposing a new design for the switch. We consider the new design from different perspectives: dynamic, electric, fluidic, etc. It is billed to overcome the difficulties and involves the implementation of liquid metal contact electrostatically actuated to ensure the same switching performance, with prolonged life span, and robust switching speed.


Author(s):  
M. U. Siddiqui ◽  
A. F. M. Arif

Photovoltaic (PV) technology provides a direct method to convert solar energy into electricity. In recent years, the use of PV systems has increased greatly with many applications of PV devices in systems as small as battery chargers to large scale electricity generation systems and satellite power systems. An important factor that influences the reliability of photovoltaic modules is their ability to withstand high thermal stresses which develop in PV modules due to the different coefficients of thermal expansion of the different module materials. PV modules also experience thermal cycles which can lead to failure of the module. In the present work, three dimensional numerical thermal and structural models of a PV module were developed and sequentially coupled together to calculate the temperature distribution in the PV module and the thermal stresses developing in it. The model is also capable of simulating PV module cooling. Using the model, a study was conducted to evaluate the thermal and structural performance of the module with and without cooling and the variation in thermal stress magnitudes with changing environmental conditions (solar radiation and ambient temperature) and operating conditions (heat exchanger inlet temperature and velocity).


Author(s):  
Stacey Cunningham ◽  
Amine Chellali ◽  
Jose Banez ◽  
Caroline G. L. Cao

Robots are increasingly being incorporated into the clinical environment. In minimally invasive surgery, robots are used to hold the tools and camera at the operating table while the surgeon performs surgery at a console away from the rest of the surgical team, reducing the opportunity for face-to-face communication. As surgery is a team-oriented process in which surgeons, nurses, and anesthesiologists collaborate to achieve the common goal of delivering care to a patient, any barrier to communication can inhibit the team process required in surgery. This study examined surgeon-nurse spatial communication in a collaborative surgical task in a controlled experiment. It was hypothesized that providing a spatial communication aid would improve performance time and reduce the amount of communication needed for the task. Fifteen dyads of surgeons or novices completed a simulated organ manipulation task using a laparoscopic trainer box in two viewing conditions: aligned (0°) and rotated (90°) camera view. Subjects were divided into 3 experimental groups: control, cardinal directional aid, and grid directional aid. Results show that experts were faster than novices, and the directional aids significantly facilitated task performance. While the volume of communication was not different across the three groups, there was a shift toward a more collaborative style of communication in the cardinal directions and grid conditions. The findings suggest that spatial communication aids can improve performance and promote collaboration in the robotic operating room.


Author(s):  
Greg A. Jamieson ◽  
Jonas Andersson ◽  
Ann Bisantz ◽  
Asaf Degani ◽  
Morten Lind

Human-automation interaction in complex systems is common, yet design for this interaction is often conducted without explicit consideration of the role of the human operator. Fortunately, there are a number of modeling frameworks proposed for supporting this design activity. However, the frameworks are often adapted from other purposes, usually applied to a limited range of problems, sometimes not fully described in the open literature, and rarely critically reviewed in a manner acceptable to proponents and critics alike. The present paper introduces a panel session wherein these proponents (and reportedly one or two critics) can engage one another on several agreed questions about such frameworks. The goal is to aid non-aligned practitioners in choosing between alternative frameworks for their human-automation interaction design challenges.


Author(s):  
Alexandra Tallet ◽  
Cédric Leblond ◽  
Cyrille Allery

Despite constantly improving computer capabilities, classical numerical methods (DNS, LES,…) are still out of reach in fluid flow control strategies. To make this problem tractable almost in real-time, reduced-order models are used here. The spatial basis is obtained by POD (Proper Orthogonal Decomposition), which is the most commonly used technique in fluid mechanics. The advantage of the POD basis is its energetic optimality: few modes contain almost the totality of energy. The ROM is achieved with the recent developed optimal projection [1], unlike classical methods which use Galerkin projection. This projection method is based on the minimization of the residual equations in order to have a stabilizing effect. It enables moreover to access pressure field. Here, the projection method is slightly different from [1]: a formulation without the Poisson equation is proposed and developed. Then, the ROM obtained by optimal projection is introduced within an optimal control loop. The flow control strategy is illustrated on an isothermal square lid-driven cavity and an anisothermal square ventilated cavity. The aim is to reach a target temperature (or target pollutant concentration) in the cavity, with an interior initial temperature (or initial pollutant concentration), by adjusting the inlet fluid flow rate.


Author(s):  
William W. Schultz ◽  
Eric Johnsen ◽  
Bosuk Han ◽  
Sung Park

An injection pump is one of the simplest mechanics devices imaginable with no moving parts and a very simple geometry. We examine the device performance for steam injectors using primarily a control volume analysis and consider to what extent this simplified analysis represents optimal performance. We seek the rationale for performing CFD studies and develop optimization scenarios.


Author(s):  
Vittorio Verda ◽  
Giorgia Baccino ◽  
Stefano Pizzuti

In this paper, a solar cooling installation is analyzed with the aim of optimizing its performances. The system consists of vacuum solar collectors, which supply hot water to a LiBr absorption chiller. A boiler can be used to supply an additional amount of hot water in the case of insufficient solar radiation. In addition, a vapor compression chiller operates as a backup system and integrates the solar driven system in the case of large cooling request. Such system gives multiple operating options, especially at partial load. A model of the system is presented and applied to the real plant. It is shown that if a multi-objective optimization is performed, considering minimum primary energy consumption from fossil fuel and maximum utilization of the absorption system, a Pareto front is obtained. This occurs because the two objective functions are competing. A control strategy based on the use of neural networks is presented. Input variables are the solar radiation, ambient temperature and the cooling request. In this work the control strategy is adjusted in order to reach the minimum fossil energy consumption, but the same approach can be applied with other objective functions.


Author(s):  
Somer M. Nacy ◽  
Montassar Aidi Sharif

In this paper a moderate technique has been developed to improve an electromagnetic actuation principle for pumping systems, thus obtaining pulsating flow. This work consists of two parts, namely, a numerical part, in which ANSYS software is adopted to simulate the pumping process, while the experimental part consists of the fabrication and testing of the computer controlled electromagnetic pumping system. The objective of this work is to enhance both flow rate and outlet pressure. This was achieved via two main parameters, namely, the electromagnetic pulse duration and the width of each electromagnet. Results show that flow rate and outlet pressure increase with decreasing the pulse duration and with increasing each electromagnet width.


Sign in / Sign up

Export Citation Format

Share Document