Nonsymmetric Creep Buckling of Cylindrical Shells under Axial Compression and External Pressure

1976 ◽  
pp. 78-85 ◽  
Author(s):  
R. B. Rikards ◽  
G. A. Teters
1974 ◽  
Vol 96 (4) ◽  
pp. 1322-1327
Author(s):  
Shun Cheng ◽  
C. K. Chang

The buckling problem of circular cylindrical shells under axial compression, external pressure, and torsion is investigated using a displacement function φ. A governing differential equation for the stability of thin cylindrical shells under combined loading of axial compression, external pressure, and torsion is derived. A method for the solutions of this equation is also presented. The advantage in using the present equation over the customary three differential equations for displacements is that only one trial solution is needed in solving the buckling problems as shown in the paper. Four possible combinations of boundary conditions for a simply supported edge are treated. The case of a cylinder under axial compression is carried out in detail. For two types of simple supported boundary conditions, SS1 and SS2, the minimum critical axial buckling stress is found to be 43.5 percent of the well-known classical value Eh/R3(1−ν2) against the 50 percent of the classical value presently known.


2014 ◽  
Vol 36 (3) ◽  
pp. 201-214
Author(s):  
Dao Van Dung ◽  
Vu Hoai Nam

Based on the classical thin shell theory with the geometrical nonlinearity in von Karman-Donnell sense, the smeared stiffener technique and Galerkin method, this paper deals with the nonlinear dynamic problem of eccentrically stiffened functionally graded circular cylindrical shells subjected to time dependent axial compression and external pressure by analytical approach. The present novelty is that an approximate three-term solution of deflection taking into account the nonlinear buckling shape is chosen, the nonlinear dynamic second-order differential three equations system is established and the frequency-amplitude relation of nonlinear vibration is obtained in explicit form.


1968 ◽  
Vol 90 (4) ◽  
pp. 589-595 ◽  
Author(s):  
Lars A˚ke Samuelson

The results are presented of an experimental investigation of creep buckling of circular cylindrical shells. The test specimens, manufactured from an aluminum alloy similar to 24S, had radius to thickness ratios between 30 and 150 and length to radius ratios greater than 2. They were subjected to axial compression or bending at a temperature of 225 deg C (430 deg F) and at various stress levels. The critical time under a constant load was determined as a function of the stress level, the shell geometry, and the type of loading. It was found that the shells subjected to pure compression had a substantially shorter lifetime than those subjected to pure bending with the same maximum applied stress. The thickest test specimens failed through collapse into a “wrinkling” mode which for the pure compression case is axisymmetric, whereas the thinner cylinders buckled into a typical diamond pattern. In all cases, buckling occurred at one of the edges. The postbuckling configuration was found to depend not only on the geometry of the shell but also on the load level. For very low stress levels, even the thinner cylinders buckled in the short wave pattern (symmetric for compression). A comparison between the present experimental results and theoretical values of the critical time presented in earlier works showed that a fairly good estimate may be obtained for the case of axial compression, whereas the approximate theory for creep buckling under pure bending gives an unduly conservative result.


Sign in / Sign up

Export Citation Format

Share Document