Modelling and Simulation of Power Devices for High-Voltage Integrated Circuits

Author(s):  
Rolf Hünlich ◽  
Günter Albinus ◽  
Herbert Gajewski ◽  
Annegret Glitzky ◽  
Wilfried Röpke ◽  
...  
Author(s):  
F. Udrea ◽  
H. T. Lim ◽  
D. Garner ◽  
A. Popescu ◽  
W. Milne ◽  
...  

1997 ◽  
Vol 55 ◽  
pp. 51-53
Author(s):  
S.N. Ekkanath-Madathil ◽  
M.M. De Souza ◽  
Zuo Xiang Qin

2020 ◽  
Vol 13 (12) ◽  
pp. 120101
Author(s):  
Tsunenobu Kimoto ◽  
Heiji Watanabe

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 313
Author(s):  
Jacek Rąbkowski ◽  
Andrzej Łasica ◽  
Mariusz Zdanowski ◽  
Grzegorz Wrona ◽  
Jacek Starzyński

The paper describes major issues related to the design of a portable SiC-based DC supply developed for evaluation of a high-voltage Marx generator. This generator is developed to be a part of an electromagnetic cannon providing very high voltage and current pulses aiming at the destruction of electronics equipment in a specific area. The portable DC supply offers a very high voltage gain: input voltage is 24 V, while the generator requires supply voltages up to 50 kV. Thus, the system contains two stages designed on the basis of SiC power devices operating with frequencies up to 100 kHz. At first, the input voltage is boosted up to 400 V by a non-isolated double-boost converter, and then a resonant DC-DC converter with a special transformer elevates the voltage to the required level. In the paper, the main components of the laboratory setup are presented, and experimental results of the DC supply and whole system are also shown.


2018 ◽  
Vol 924 ◽  
pp. 854-857
Author(s):  
Ming Hung Weng ◽  
Muhammad I. Idris ◽  
S. Wright ◽  
David T. Clark ◽  
R.A.R. Young ◽  
...  

A high-temperature silicon carbide power module using CMOS gate drive technology and discrete power devices is presented. The power module was aged at 200V and 300 °C for 3,000 hours in a long-term reliability test. After the initial increase, the variation in the rise time of the module is 27% (49.63ns@1,000h compared to 63.1ns@3,000h), whilst the fall time increases by 54.3% (62.92ns@1,000h compared to 97.1ns@3,000h). The unique assembly enables the integrated circuits of CMOS logic with passive circuit elements capable of operation at temperatures of 300°C and beyond.


Author(s):  
Ankan De ◽  
Adam Morgan ◽  
Subhashish Bhattacharya ◽  
Douglas C. Hopkins

In this paper an attempt has been made to demonstrate various package design considerations to accommodate series connection of high voltage Si-IGBT (6500V/25A die) and SiC-Diode (6500V/25A die). The effects of connecting the cathode of the series diode to the collector of the IGBT versus connecting the emitter of the IGBT to the anode of the series diode has been analyzed in regards to gate terminal operation and the parasitic line inductance of the structure. ANSYS Q3D/MAXWELL software have been used to analyze and extract parasitic inductance and capacitances in the package along with electromagnetic fields, electric potentials, and current density distributions throughout the package for variable parameters. SIMPLIS-SIMETRIX is used to simulate typical switch behavior for different parasitic parameters under hard switched conditions. Various simulation results have then been used to redesign and justify the optimized package structure for the final current switch design. The thermal behavior of such a package is also conducted in COMSOL in order to ensure that the thermal ratings of the power devices is not exceeded, and to understand where potentially harmful hotspots could arise and estimate the maximum attainable frequency of operation. The main motivation of this work is to enumerate detailed design considerations for packing a high voltage current switch package.


1989 ◽  
Vol 24 (10) ◽  
pp. 993-1000 ◽  
Author(s):  
G. Charitat ◽  
A. Nezar ◽  
P. Rossel

Author(s):  
Tsunenobu Kimoto ◽  
Koutarou Kawahara ◽  
Hiroki Niwa ◽  
Takafumi Okuda ◽  
Jun Suda
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document