scholarly journals Portable DC Supply Based on SiC Power Devices for High-Voltage Marx Generator

Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 313
Author(s):  
Jacek Rąbkowski ◽  
Andrzej Łasica ◽  
Mariusz Zdanowski ◽  
Grzegorz Wrona ◽  
Jacek Starzyński

The paper describes major issues related to the design of a portable SiC-based DC supply developed for evaluation of a high-voltage Marx generator. This generator is developed to be a part of an electromagnetic cannon providing very high voltage and current pulses aiming at the destruction of electronics equipment in a specific area. The portable DC supply offers a very high voltage gain: input voltage is 24 V, while the generator requires supply voltages up to 50 kV. Thus, the system contains two stages designed on the basis of SiC power devices operating with frequencies up to 100 kHz. At first, the input voltage is boosted up to 400 V by a non-isolated double-boost converter, and then a resonant DC-DC converter with a special transformer elevates the voltage to the required level. In the paper, the main components of the laboratory setup are presented, and experimental results of the DC supply and whole system are also shown.

Author(s):  
G.Vijaykumar and Dr.V.Geetha

A high voltage gain modified SEPIC converter is proposed in this paper. This proposed converter has many advantages i.e., high output voltage, lower voltage stress, high efficiency, voltage gain is high without any coupled inductor and transformer, continuous input current. Thus, there is no overshoot voltage at turn-off process for switches. By using single switches, the CCM mode operation can be easily controlled by this converter, so control system is simple and also wide output values is obtained only by modifying the duty cycle. This modified converter has lower components than conventional converter. The operating modes and design of modified converter are discussed. The output power of this converter is 6 watts. By this converter, this converter capable of developing the two and half times of input voltage. The PV system also used this converter to develop high voltage gain. This high voltage gain is achieved by using MATLAB/SIMULIMK platform.


2003 ◽  
Vol 764 ◽  
Author(s):  
Sei-Hyung Ryu ◽  
Anant K. Agarwal ◽  
James Richmond ◽  
John W. Palmour

AbstractVery high critical field, reasonable bulk electron mobility, and high thermal conductivity make 4H-Silicon carbide very attractive for high voltage power devices. These advantages make high performance unipolar switching devices with blocking voltages greater than 1 kV possible in 4H-SiC. Several exploratory devices, such as vertical MOSFETs and JFETs, have been reported in SiC. However, most of the previous works were focused on high voltage aspects of the devices, and the high speed switching aspects of the SiC unipolar devices were largely neglected. In this paper, we report on the static and dynamic characteristics of our 4H-SiC DMOSFETs. A simple model of the on-state characteristics of 4H-SiC DMOSFETs is also presented.


2020 ◽  
Vol 11 (4) ◽  
pp. 64 ◽  
Author(s):  
Zhengxin Liu ◽  
Jiuyu Du ◽  
Boyang Yu

Direct current to direct current (DC/DC) converters are required to have higher voltage gains in some applications for electric vehicles, high-voltage level charging systems and fuel cell electric vehicles. Therefore, it is greatly important to carry out research on high voltage gain DC/DC converters. To improve the efficiency of high voltage gain DC/DC converters and solve the problems of output voltage ripple and robustness, this paper proposes a double-boost DC/DC converter. Based on the small-signal model of the proposed converter, a double closed-loop controller with voltage–current feedback and input voltage feedforward is designed. The experimental results show that the maximum efficiency of the proposed converter exceeds 95%, and the output voltage ripple factor is 0.01. Compared with the traditional boost converter and multi-phase interleaved DC/DC converter, the proposed topology has certain advantages in terms of voltage gain, device stress, number of devices, and application of control algorithms.


2015 ◽  
Vol 781 ◽  
pp. 418-421
Author(s):  
Chalermpol Reaungepattanawiwat ◽  
Yutthana Kanthaphayao

This paper presents a high voltage gain of a DC-DC converter. The proposed system consists of voltage multiplier circuits and a coupled inductor of a boost DC-DC converter. The input voltage of the voltage multiplier circuit is the induced voltage of inductor at a boost DC-DC converter. The field programmable gate array (FGPA) is used for generating the control signal of the proposed system. To verify the proposed circuit, an experiment was conducted from the prototype circuit. The proposed circuit can step-up the voltage with high voltage gain. Moreover, the voltage across the switch is very low.


Author(s):  
Pekik Argo Dahono

This paper proposes two new simplified cascade multiphase DC-DC boost power converters with high voltage-gain and low ripple. All simplifications reduce the number of active switching devices from <em>2N</em> into <em>N</em>, where <em>N</em> is the phase number. The first simplification reduces the number of inductors from <em>2N</em> into <em>N+1</em> and increases the number of diodes from <em>2N</em> into (<em>2N+1</em>). The second simplification reduces the number of inductors from <em>2N</em> into <em>N+1</em> and increases the number of diodes from <em>2N</em> into (<em>3N+1</em>). The second simplification needs inductors with smaller current rating than the first simplification. The expressions of output voltage as a function of load current are derived by taking into account the voltage drops across the inductors and switching power devices. Simulated and experimental results are included to show the basic performance of the proposed cascade multiphase DC-DC boost power converters.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 1049 ◽  
Author(s):  
Michal Frivaldsky ◽  
Jan Morgos ◽  
Branislav Hanko ◽  
Michal Prazenica

In this article, design, analysis, and experimental testing of a dual interleaved boost converter with coupled inductor including demagnetizing winding are presented. Proposed topology uses the specific design of boost coils placed within the side parts of the EE core together with a demagnetizing coil located on the center part of the core. Paper describes principles of operational scenarios and characteristics. Through modification of turns ratio between boost coils and demagnetizing coil is possible to achieve high voltage gain. Consequently, the functional performance of this perspective topology is realized experimentally. For that purpose, the physical sample of converter is designed and tested in terms of efficiency considering the change of transferred power or the change of input voltage. Through modification of turns ratio between boost coils and demagnetizing coil is possible to achieve high voltage gain, therefore these dependencies are also evaluated considering also the change of the duty cycle. At the end of the paper basic operational properties are compared to standard boost topologies. It was discovered that even due to higher complexity of the proposed converter oppose to selected topologies, the operational performance is much better considering ripple of the electrical variables, efficiency, or the size of circuit components.


2021 ◽  
Vol 11 (8) ◽  
pp. 3625
Author(s):  
Chien-Hsuan Chang ◽  
Yi-Fan Chen

To improve the efficiency of photovoltaic (PV) grid-tied systems and simplify the circuit structure, many pseudo DC-link inverters have been proposed by combining a sinusoidal pulse-width modulation (SPWM) controlled buck-boost converter and a low-frequency polarity unfolder. However, due to the non-ideal characteristics of power diodes, the voltage-gain of a buck-boost converter is limited. To meet the needs of grid-connected systems with low input voltage and 220 Vrms utility, this paper uses two two-switch buck-boost converters with coupled inductors to develop a transformer-less buck-boost grid-tied inverter with low leakage-current and high voltage-gain. The proposed inverter is charging on the primary side of the coupled inductor and discharging in series on the primary side and the secondary side so that the voltage-gain can be greatly increased. Furthermore, the utility line can be connected to the negative end of the PV array to suppress leakage current, and the unfolding circuit can be simplified to reduce the conduction losses. High-frequency switching is only performed in one metal-oxide-semiconductor field-effect transistor (MOSFET) in each mode, which can effectively improve conversion efficiency. A prototype was implemented to obtain experimental results and to prove the validity of the proposed circuit structure.


Sign in / Sign up

Export Citation Format

Share Document