Viral Proteins Counteracting Host Defenses

Keyword(s):  
2019 ◽  
Vol 51 (12) ◽  
pp. 1-13 ◽  
Author(s):  
Hyun-Cheol Lee ◽  
Kiramage Chathuranga ◽  
Jong-Soo Lee

AbstractDuring viral infection, virus-derived cytosolic nucleic acids are recognized by host intracellular specific sensors. The efficacy of this recognition system is crucial for triggering innate host defenses, which then stimulate more specific adaptive immune responses against the virus. Recent studies show that signal transduction pathways activated by sensing proteins are positively or negatively regulated by many modulators to maintain host immune homeostasis. However, viruses have evolved several strategies to counteract/evade host immune reactions. These systems involve viral proteins that interact with host sensor proteins and prevent them from detecting the viral genome or from initiating immune signaling. In this review, we discuss key regulators of cytosolic sensor proteins and viral proteins based on experimental evidence.


1992 ◽  
Vol 3 (2) ◽  
pp. 275-278 ◽  
Author(s):  
Lawrence F. Borges
Keyword(s):  

2020 ◽  
Vol 20 (18) ◽  
pp. 1900-1907
Author(s):  
Kasturi Sarkar ◽  
Parames C. Sil ◽  
Seyed Fazel Nabavi ◽  
Ioana Berindan-Neagoe ◽  
Cosmin Andrei Cismaru ◽  
...  

The global spread of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) that causes COVID-19 has become a source of grave medical and socioeconomic concern to human society. Since its first appearance in the Wuhan region of China in December 2019, the most effective measures of managing the spread of SARS-CoV-2 infection have been social distancing and lockdown of human activity; the level of which has not been seen in our generations. Effective control of the viral infection and COVID-19 will ultimately depend on the development of either a vaccine or therapeutic agents. This article highlights the progresses made so far in these strategies by assessing key targets associated with the viral replication cycle. The key viral proteins and enzymes that could be targeted by new and repurposed drugs are discussed.


2020 ◽  
Author(s):  
Laura Lafon-Hughes

BACKGROUND COVID-19 pandemic prompts the study of coronavirus biology and search of putative therapeutic strategies. OBJECTIVE To compare SARS-CoV-2 genome-wide structure and proteins with other coronaviruses, focusing on putative coronavirus-specific or SARS-CoV-2 specific therapeutic designs. METHODS The genome-wide structure of SARS-CoV-2 was compared to that of SARS and other coronaviruses in order to gain insights, doing a literature review through Google searches. RESULTS There are promising therapeutic alternatives. Host cell targets could be modulated to hamper viral replication, but targeting viral proteins directly would be a better therapeutic design, since fewer adverse side effects would be expected. CONCLUSIONS Therapeutic strategies (Figure 1) could include the modulation of host targets (PARPs, kinases) , competition with G-quadruplexes or nucleoside analogs to hamper RDRP. The nicest anti-CoV options include inhibitors of the conserved essential viral proteases and drugs that interfere ribosome slippage at the -1 PRF site.


Sign in / Sign up

Export Citation Format

Share Document