Dependence of Photoreactivating Enzyme — Substrate Complex Formation in Saccharomyces on Liquid Holding Treatment

Author(s):  
A. Yasui ◽  
W. Laskowski
1994 ◽  
pp. 129
Author(s):  
D.A. Moss ◽  
A. Ritter ◽  
W. Andlauer ◽  
H.J. Ache

1966 ◽  
Vol 44 (22) ◽  
pp. 2597-2610 ◽  
Author(s):  
Eileen N. Ramsden ◽  
Keith J. Laidler

A kinetic study has been made of the ribonuclease-catalyzed hydrolyses of three cyclic nucleotides, cytidine-2′,3′-phosphate, uridine-2′,3′-phosphate, and N6,O5′-diacetyl cytidine-2′,3′-phosphate. Rates were measured at pH values ranging from 6 to 8.5. The variation of the kinetic parameters with pH showed that the free enzyme possesses two active groups, having pK values of 5.4 and 7.25. When the enzyme–substrate complex is formed, the pK values of the groups are increased to 6.6 and 8.4. The pK values identify these groups as imidazole groups and show that two histidine residues are present at the active site. Since both increase in pK on complex formation, it is concluded that the acid imidazole group binds the substrate, but that the basic imidazole group cannot be concerned in substrate binding and must function only in the hydrolytic step. The results indicate that the pyrimidine base is concerned in the hydrolytic step and not solely in binding, as had been postulated. It is concluded from all of the evidence that four specific sites are present at the active center of the enzyme; three are involved in binding and one in catalysis. It is proposed that the active site of ribonuclease is composed of: the histidine residue in position 12, which catalyzes the hydrolytic step; the histidine residue in position 119, which binds the 2′-ribose oxygen atom in the substrate; the lysine residue in position 41, which binds the phosphate group or anion; and the aspartic acid residue in position 121, which binds the nitrogen atom at N1 in the pyrimidine base. A mechanism for enzyme–substrate complex formation and subsequent hydrolysis is proposed.


Author(s):  
Ikechukwu I. Udema

Background: There is no much interest in the determination of total enzyme-substrate complex concentration ([ES]T) which includes undissociated ES that is unaccounted for unlike the usual ES destined for transformation into free enzyme and product or substrate. The reason is speculatively as a result of the lack of awareness of such possibility via sequestration. Objectives: 1) To derive on the basis of both reverse – and standard – quasi-steady – state assumptions equations for the determination of [ES]T which is not restricted to the complex which dissociates to product/substrate and free enzyme and 2) quantitate the value of [ES]T. Methods: A theoretical research and experimentation using Bernfeld method to determine velocities of amylolysis with which to calculate relevant parameters. Results: The [EST] is < [E] ( i. e. [ET] - [ES]); [EST] decreased with increasing [ST] and increased with increasing concentration of enzyme [ET] while the velocity of amylolysis, v and maximum velocity of amylolysis, vmax expectedly increased with increasing [ET] and [ST]. Conclusion: The equations for the determination of the total enzyme-substrate complex, free enzyme without any complex formation before and after dissociation of enzyme-complex into product and/or substrate and free enzyme were derived. The difference, [ET] - [ES] is a heterogeneous mixture of undissociated ES and free enzyme without any complex formation. This is the case because [ES] which dissociates into product is only a part of the total enzyme-substrate complex. There is a continuous formation of ES during and at the expiry of the duration of assay as long as there is no total substrate depletion.


2020 ◽  
Vol 13 (1) ◽  
pp. 231-243
Author(s):  
Ikechukwu Iloh Udema

The formation of enzyme-substrate complex, often in connection with the adsorption of the enzyme leading to either partial immobilisation in which the enzymes are adsorbed on a colloid or total immobilisation in which the enzyme is adsorbed on a rigid immobile phase is the concern of some researchers. The interest in immobilised substrate common in biological system is not very common. The objectives of this theoretical research are the rederivation of the equations of association and dissociation of reactants in the presence of adsorbents, insoluble larger macro-or supra-molecule and elucidation of why such equations are important and generalisable. The derivations produced two different equations that describe mathematically the net flux of either the substrate where the enzyme is adsorbed or the net flux of the enzyme where the substrate is adsorbed. The derivation also produced equations of translational velocities, given the probabilities that reactions occur following complex formation or that an escape of bullet molecules or dissociation reactions occur. In conclusion two different equations need separate derivation for association and dissociation of reactants. The needs for the flux of reactants have both biological and industrial relevance, respectively due to importance of time-dependent digestive processes and for the optimisation of the production of desired products of enzymatic action. The equations describing net flux seem generalisable in that information about the physicochemical properties of both crowding agent and immobilisers may not be needed for calculations.


Sign in / Sign up

Export Citation Format

Share Document