industrial relevance
Recently Published Documents


TOTAL DOCUMENTS

105
(FIVE YEARS 35)

H-INDEX

16
(FIVE YEARS 2)

Marine Drugs ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. 645
Author(s):  
Gamal A. Mohamed ◽  
Sabrin R. M. Ibrahim

The marine environment is an underexplored treasure that hosts huge biodiversity of microorganisms. Marine-derived fungi are a rich source of novel metabolites with unique structural features, bioactivities, and biotechnological applications. Marine-associated Cladosporium species have attracted considerable interest because of their ability to produce a wide array of metabolites, including alkaloids, macrolides, diketopiperazines, pyrones, tetralones, sterols, phenolics, terpenes, lactones, and tetramic acid derivatives that possess versatile bioactivities. Moreover, they produce diverse enzymes with biotechnological and industrial relevance. This review gives an overview on the Cladosporium species derived from marine habitats, including their metabolites and bioactivities, as well as the industrial and biotechnological potential of these species. In the current review, 286 compounds have been listed based on the reported data from 1998 until July 2021. Moreover, more than 175 references have been cited.


2021 ◽  
Vol 7 (11) ◽  
pp. 943
Author(s):  
Sabrin R. M. Ibrahim ◽  
Alaa Sirwi ◽  
Basma G. Eid ◽  
Shaimaa G. A. Mohamed ◽  
Gamal A. Mohamed

Fungi have been assured to be one of the wealthiest pools of bio-metabolites with remarkable potential for discovering new drugs. The pathogenic fungi, Fusarium oxysporum affects many valuable trees and crops all over the world, producing wilt. This fungus is a source of different enzymes that have variable industrial and biotechnological applications. Additionally, it is widely employed for the synthesis of different types of metal nanoparticles with various biotechnological, pharmaceutical, industrial, and medicinal applications. Moreover, it possesses a mysterious capacity to produce a wide array of metabolites with a broad spectrum of bioactivities such as alkaloids, jasmonates, anthranilates, cyclic peptides, cyclic depsipeptides, xanthones, quinones, and terpenoids. Therefore, this review will cover the previously reported data on F. oxysporum, especially its metabolites and their bioactivities, as well as industrial relevance in biotechnology and nanotechnology in the period from 1967 to 2021. In this work, 180 metabolites have been listed and 203 references have been cited.


2021 ◽  
Author(s):  
Breno Bernard Nicolau de França ◽  
Valdemar Vicente Graciano Neto

Simulation has been successfully used in several domains, for research and practical purposes. Systematic approaches for simulation arose and a myriad of simulation models were proposed in the context of Software Engineering over the past decades. Despite the lack of rigor and industrial relevance on many of these, we discuss the existing synergies and consolidated knowledge to foster new opportunities between these areas.


Catalysts ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1157
Author(s):  
Muhamad Nadzmi Omar ◽  
Raja Noor Zaliha Raja Abd Rahman ◽  
Noor Dina Muhd Noor ◽  
Wahhida Latip ◽  
Victor Feizal Knight ◽  
...  

Aminopeptidase P (APPro, E.C 3.4.11.9) cleaves N-terminal amino acids from peptides and proteins where the penultimate residue is proline. This metal-ion-dependent enzyme shares a similar fold, catalytic mechanism, and substrate specificity with methionine aminopeptidase and prolidase. It adopts a canonical pita bread fold that serves as a structural basis for the metal-dependent catalysis and assembles as a tetramer in crystals. Similar to other metalloaminopeptidase, APPro requires metal ions for its maximal enzymatic activity, with manganese being the most preferred cation. Microbial aminopeptidase possesses unique characteristics compared with aminopeptidase from other sources, making it a great industrial enzyme for various applications. This review provides a summary of recent progress in the study of the structure and function of aminopeptidase P and describes its various applications in different industries as well as its significance in the environment.


2021 ◽  
Vol 17 (9) ◽  
pp. e1009446
Author(s):  
Elzbieta Rembeza ◽  
Martin K. M. Engqvist

Only a small fraction of genes deposited to databases have been experimentally characterised. The majority of proteins have their function assigned automatically, which can result in erroneous annotations. The reliability of current annotations in public databases is largely unknown; experimental attempts to validate the accuracy within individual enzyme classes are lacking. In this study we performed an overview of functional annotations to the BRENDA enzyme database. We first applied a high-throughput experimental platform to verify functional annotations to an enzyme class of S-2-hydroxyacid oxidases (EC 1.1.3.15). We chose 122 representative sequences of the class and screened them for their predicted function. Based on the experimental results, predicted domain architecture and similarity to previously characterised S-2-hydroxyacid oxidases, we inferred that at least 78% of sequences in the enzyme class are misannotated. We experimentally confirmed four alternative activities among the misannotated sequences and showed that misannotation in the enzyme class increased over time. Finally, we performed a computational analysis of annotations to all enzyme classes in the BRENDA database, and showed that nearly 18% of all sequences are annotated to an enzyme class while sharing no similarity or domain architecture to experimentally characterised representatives. We showed that even well-studied enzyme classes of industrial relevance are affected by the problem of functional misannotation.


2021 ◽  
Author(s):  
Roua Lajnaf ◽  
Hamadi Attia ◽  
Mohamed Ali Ayadi

Milk, well known for its nutritional properties, has also good functional properties as foaming, emulsifying and biological activities due to proteins. Milk proteins are then considered as promising food ingredients due to their particular structural characteristics leading to various interesting properties in the industrial field. Thus, the examination of the biological activities and techno-functional properties (foaming and emulsifying properties) of some milk protein fractions revealed interesting ingredients for food industry due to their nutritional value, which is of a great scientific and industrial relevance. This chapter presented an overview of the studied functional properties of some milk proteins.


2021 ◽  
Vol 7 (31) ◽  
pp. eabf7414
Author(s):  
Maximilian M. Sonner ◽  
Farhad Khosravi ◽  
Lisa Janker ◽  
Daniel Rudolph ◽  
Gregor Koblmüller ◽  
...  

Spin-momentum locking is a universal wave phenomenon promising for applications in electronics and photonics. In acoustics, Lord Rayleigh showed that surface acoustic waves exhibit a characteristic elliptical particle motion strikingly similar to spin-momentum locking. Although these waves have become one of the few phononic technologies of industrial relevance, the observation of their transverse spin remained an open challenge. Here, we observe the full spin dynamics by detecting ultrafast electron cycloids driven by the gyrating electric field produced by a surface acoustic wave propagating on a slab of lithium niobate. A tubular quantum well wrapped around a nanowire serves as an ultrafast sensor tracking the full cyclic motion of electrons. Our acousto-optoelectrical approach opens previously unknown directions in the merged fields of nanoacoustics, nanophotonics, and nanoelectronics for future exploration.


Yeast ◽  
2021 ◽  
Author(s):  
Ruben Wauters ◽  
Scott J. Britton ◽  
Kevin J. Verstrepen

2021 ◽  
Vol 9 (3) ◽  
pp. 648
Author(s):  
Alessia Levante ◽  
Camilla Lazzi ◽  
Giannis Vatsellas ◽  
Dimitris Chatzopoulos ◽  
Vasilis S. Dionellis ◽  
...  

The analysis of bacterial genomes is a potent tool to investigate the distribution of specific traits related to the ability of surviving in particular environments. Among the traits associated with the adaptation to hostile conditions, toxin–antitoxin (TA) systems have recently gained attention in lactic acid bacteria. In this work, genome sequences of Lacticaseibacillus strains of dairy origin were compared, focusing on the distribution of type I TA systems homologous to Lpt/RNAII and of the most common type II TA systems. A high number of TA systems have been identified spread in all the analyzed strains, with type I TA systems mainly located on plasmid DNA. The type II TA systems identified in these strains highlight the diversity of encoded toxins and antitoxins and their organization. This study opens future perspectives on the use of genomic data as a resource for the study of TA systems distribution and prevalence in microorganisms of industrial relevance.


Sign in / Sign up

Export Citation Format

Share Document