mechanisms of reactions
Recently Published Documents


TOTAL DOCUMENTS

235
(FIVE YEARS 10)

H-INDEX

32
(FIVE YEARS 1)

Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1032
Author(s):  
Ludmila Matienko ◽  
Vladimir Binyukov ◽  
Elena Mil ◽  
Alexander Goloshchapov

Earlier, we established that nickel or iron heteroligand complexes, which include PhOH (nickel complexes) or tyrosine residue (nickel or iron complexes), are not only hydrocarbon oxidation catalysts (in the case of PhOH), but also simulate the active centers of enzymes (PhOH, tyrosine). The AFM method established the self-organization of nickel or iron heteroligand complexes, which included tyrosine residue or PhOH, into supramolecular structures on a modified silicon surface. Supramolecular structures were formed as a result of H-bonds and other non-covalent intermolecular interactions and, to a certain extent, reflected the structures involved in the mechanisms of reactions of homogeneous and enzymatic catalysis. Using the AFM method, we obtained evidence at the model level in favor of the involvement of the tyrosine fragment as one of the possible regulatory factors in the functioning of Ni(Fe)ARD dioxygenases or monooxygenases of the family of cytochrome P450. The principles of actions of these oxygenases were used to create highly efficient catalytic systems for the oxidation of hydrocarbons.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Boris G. Ershov ◽  
Bladimir P. Shilov

Abstract The properties and stability of ozone in aqueous solutions of various compositions in the рН range of 0–14 were considered. The effect of anions and cations, which are involved in the redox reactions of actinides, on the stability of ozone and its reactivity has been studied. The reactions of О3 with ions of d- and f-elements were analyzed. Depending on the solution composition and рН value, the reaction can occur directly with the O3 molecule (direct mechanism) and/or with short-lived ion-radical products (•OH, HO 2 • / O 2 − • ${\text{HO}}_{2}^{{\bullet}}/{\text{O}}_{2}^{-{\bullet}}$ , H2O2/ HO 2 − ${\text{HO}}_{2}^{-}$ , O 3 − • ${\text{O}}_{3}^{-{\bullet}}$ ) formed upon ozone decomposition in water (indirect mechanism). Ions with inert coordination sphere react with О3 in the outer-sphere fashion with electron transfer. Polyvalent ions with labile coordination spheres are oxidized in acidic medium via О atom transfer, possibly, with intermediate peroxy addition (H2O2, HNO4, H2SO5, etc.). In alkaline medium, О3 is converted to the O 3 − • ${\text{O}}_{3}^{-{\bullet}}$ radical ion, which is the key oxidant for actinides. The results of studies and the mechanisms of reactions of ozone and its intermediates decomposition products with U, Np, Pu, and Am in various oxidation states and with some transition metals (Fe, Mn, Ag, Co, etc.) in aqueous solutions are presented and discussed.


Author(s):  
V.M. Dudnyk ◽  
O.I. Izyumets ◽  
V. H. Furman ◽  
O. V. Kutsak ◽  
O.O. Stetsun

Annotation. The aim of the study was to analyze with the help of literature data the features of the clinical course of immune thrombocytopenia, to monitor the mechanisms of reactions, as well as to reproduce them on their own observation. Features of clinical course and differential diagnosis of immune thrombocytopenia are described. It is established that the main manifestation of this pathology is hemorrhagic syndrome, accompanied by skin hemorrhages, bleeding, possible hepatosplenomegaly, jaundice. Detection of antiplatelet antibodies is used to confirm the diagnosis.


2020 ◽  
Vol 54 (9-10) ◽  
pp. 857-868
Author(s):  
CRISTINA STEFANESCU ◽  
WILLIAM H. DALY ◽  
IOAN I. NEGULESCU

Chemistry of cellulose in ionic liquids has been briefly reviewed and, accordingly, the phthalation of chitosan in these ionic solvents has been investigated. Chitosan (K) has been reacted at 100 °C for 4 hours with phthalic anhydride (PA) in ionic liquids 1-butyl-3-methylimidazolium acetate (BMIMAc) and 1-butyl-3-methylimidazolium chloride (BMIMCl) in the presence of bases, pyridine and 1,4-diazobicyclo[2.2.2] octane (DABCO), or the phthalation has been catalyzed by N-bromosuccinimide (NBS). Depending on the nature of the reaction components, the samples were prepared with molar ratios of PA to anhydroglucose unit (PA:K) from 3:1 to 10:1, including molar ratios of bases or catalyst to chitosan, ranging also from 3:1 to 10:1. All the reaction products were soluble in dimethyl sulfoxide and dimethylformamide. Both functional groups of chitosan units, -OH and -NH2 , reacted, resulting in FTIR confirmed products containing esters, amide, and imide functional groups. Heating the isolated phthalated chitosan products to 200 °C led to cyclization with the formation of imide groups and elimination of water. When bases controlled the reactions, the highest degrees of substitution of DABCO product (DS = 0.80) was slightly higher than the highest DC of the reaction products obtained in the presence of pyridine (DS = 0.77). However, the presence of the Nbromosuccinimide catalyst in the system led to an increase of the degree of substitution of the functional groups of chitosan (DS = 1.75), compared with that listed above for the products resulted when the reactions were carried out in the presence of bases. The thermal stability of the chitosan derivatives obtained in the presence of a base depended primarily upon the nature of the counter ion of the ionic liquid. When the reaction was conducted in the acetate ionic liquid BMIMAc, the phthalated chitosan exhibited a lower thermal stability than that of chitosan, while when the chloride ionic liquid BMIMCl was used as solvent, the thermal stability of the phthalated chitosan increased, indicating an interference of the ionic solvents in the mechanisms of reactions. Nevertheless, the thermal behavior of the phthalated products obtained in reactions catalyzed by NBS may be correlated with the increasing degrees of substitution achieved with increased catalyst concentrations: a higher DS resulted in a higher weight loss at higher temperatures.


Author(s):  
S.F. Vasilevsky ◽  
A.A. Stepanov

In addition to the reported synthetic routes for the acetylene derivatives of quinones, a detailed analysis of the fundamental chemical, physicochemical, and biological properties of this class of compounds is presented herein. The advantages of Pd- and Cu-catalyzed cross-coupling of terminal alkynes with iodarenes via the Sonogashira reaction to produce new acetylenylquinones with predetermined properties are examined. Here, combining quinoid and acetylene residues into one molecule gives the resulting compounds chemical specificity, as demonstrated by several reported examples of non-trivial transformations. In particular, the presence of the quinoid cycle significantly increases the electrophilicity of the triple bond and determines the range of transformation possibilities. Moreover, acetylenylquinones have heightened sensitivity to both external (such as the reaction temperature and the nature of the solvent) and internal (e.g., the structure of substituents in the nucleus and the acetylene fragment) factors. For example, regioselective cleavage of a strong triple bond under the action of amines is possible in the absence of a metal catalyst. Peri-substituted acetylenyl-9,10-anthraquinones are most suited for the synthetic route because of the proximity of the acetylene and carbonyl groups. Mechanisms of reactions of selective alkynylquinones are described.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Claudia Civai ◽  
Inge Huijsmans ◽  
Alan G. Sanfey

Sign in / Sign up

Export Citation Format

Share Document