The Sodium Pump in Necturus Gallbladder Epithelium

Author(s):  
F. Giraldez
1992 ◽  
Vol 99 (2) ◽  
pp. 241-262 ◽  
Author(s):  
G A Altenberg ◽  
J S Stoddard ◽  
L Reuss

In Necturus gallbladder epithelium, lowering serosal [Na+] ([Na+]s) reversibly hyperpolarized the basolateral cell membrane voltage (Vcs) and reduced the fractional resistance of the apical membrane (fRa). Previous results have suggested that there is no sizable basolateral Na+ conductance and that there are apical Ca(2+)-activated K+ channels. Here, we studied the mechanisms of the electrophysiological effects of lowering [Na+]s, in particular the possibility that an elevation in intracellular free [Ca2+] hyperpolarizes Vcs by increasing gK+. When [Na+]s was reduced from 100.5 to 10.5 mM (tetramethylammonium substitution), Vcs hyperpolarized from -68 +/- 2 to a peak value of -82 +/- 2 mV (P less than 0.001), and fRa decreased from 0.84 +/- 0.02 to 0.62 +/- 0.02 (P less than 0.001). Addition of 5 mM tetraethylammonium (TEA+) to the mucosal solution reduced both the hyperpolarization of Vcs and the change in fRa, whereas serosal addition of TEA+ had no effect. Ouabain (10(-4) M, serosal side) produced a small depolarization of Vcs and reduced the hyperpolarization upon lowering [Na+]s, without affecting the decrease in fRa. The effects of mucosal TEA+ and serosal ouabain were additive. Neither amiloride (10(-5) or 10(-3) M) nor tetrodotoxin (10(-6) M) had any effects on Vcs or fRa or on their responses to lowering [Na+]s, suggesting that basolateral Na+ channels do not contribute to the control membrane voltage or to the hyperpolarization upon lowering [Na+]s. The basolateral membrane depolarization upon elevating [K+]s was increased transiently during the hyperpolarization of Vcs upon lowering [Na+]s. Since cable analysis experiments show that basolateral membrane resistance increased, a decrease in basolateral Cl- conductance (gCl-) is the main cause of the increased K+ selectivity. Lowering [Na+]s increases intracellular free [Ca2+], which may be responsible for the increase in the apical membrane TEA(+)-sensitive gK+. We conclude that the decrease in fRa by lowering [Na+]s is mainly caused by an increase in intracellular free [Ca2+], which activates TEA(+)-sensitive maxi K+ channels at the apical membrane and decreases apical membrane resistance. The hyperpolarization of Vcs is due to increase in: (a) apical membrane gK+, (b) the contribution of the Na+ pump to Vcs, (c) basolateral membrane K+ selectivity (decreased gCl-), and (d) intraepithelial current flow brought about by a paracellular diffusion potential.


1983 ◽  
Vol 244 (5) ◽  
pp. C419-C421 ◽  
Author(s):  
J. A. Jarrell

The cells of Necturus gallbladder epithelium are electrically coupled. This work used intracellular injection of the fluorescent dye Lucifer yellow to demonstrate that these cells are also dye coupled and that this coupling is rapidly and reversibly inhibited by high concentrations of carbon dioxide. Dye coupling is also inhibited by the calcium ionophore A23187.


1984 ◽  
Vol 247 (5) ◽  
pp. C495-C500 ◽  
Author(s):  
R. S. Fisher

The relative Cl- and K+ sensitivity of the basolateral membrane potential of the in vitro Necturus gallbladder epithelium was determined. Tissues were punctured with two conventional glass microelectrodes to simultaneously measure the intracellular voltage (Vcs) and the voltage across the subepithelial connective tissue (Vse). Increasing the serosal K+ concentration from 2.5 to 25 mM caused a rapid monotonic depolarization of Vcs without changes of Vse. Reduction of serosal Cl- concentration (98 to 8 mM) caused a transient change of Vse. Thus the difference between Vcs and Vse more accurately reflected the basolateral membrane voltage (Vc) after Cl- concentration changes. The changes of Vc were small and biphasic in response to the decrease of serosal Cl- concentration. Perfusion of a low-ionic-strength solution in the mucosal chamber decreased the current that normally passes through the epithelium. Consistent with the notion that the basolateral voltage changes are attenuated by parallel pathways, the K+-induced depolarization increased by 80% under these conditions. The changes of Vc in response to Cl- substitutions were not different from those of tissue bathed in control solution. Thus the basolateral membrane voltage is relatively insensitive to changes of serosal Cl- concentration. I conclude that Cl- movement across the basolateral membrane is not attributable to simple electrodiffusion, and Cl- exit from these cells at this membrane must be electroneutral.


1988 ◽  
Vol 254 (5) ◽  
pp. C643-C650 ◽  
Author(s):  
C. W. Davis ◽  
A. L. Finn

In Necturus gallbladder epithelium, elevation of mucosal K+ to 95 mM in the presence of 10 mM Na+ resulted in cell swelling at a rate of 3.2% original volume per minute, followed by volume-regulatory shrinking. When Na+ was completely removed from or when amiloride (10(-4) M) was added to the mucosal medium, K+-induced cell swelling was abolished. In the presence of 10 mM Na+, 1 mM Ba2+ abolished and substitution of mucosal Cl- by NO-3 had no effect on K+-induced swelling. Thus solute entry following elevation of mucosal K+ is effected by separate K+ and Cl- pathways. Furthermore, substitution of 95 mM K+ for Na+ in the mucosal bathing medium leads to the development of a Cl- conductance in the basolateral membrane as long as some Na+ remains in the medium. However, cell swelling induced by mucosal dilution does not lead to the appearance of a Cl- conductance. Thus the activation of this conductance requires both swelling and membrane depolarization. These results show that 1) high mucosal K+ leads to cell swelling due to the entry of Cl- along with K+ and the Cl- can enter across either membrane, 2) the Cl- pathways require the presence of mucosal Na+, and 3) cell volume regulation is activated by an increase in volume per se, i.e., a hyposmotic exposure is not required for volume regulation to occur.


1990 ◽  
Vol 95 (5) ◽  
pp. 791-818 ◽  
Author(s):  
Y Segal ◽  
L Reuss

Using the patch-clamp technique, we have identified large-conductance (maxi) K+ channels in the apical membrane of Necturus gallbladder epithelium, and in dissociated gallbladder epithelial cells. These channels are more than tenfold selective for K+ over Na+, and exhibit unitary conductance of approximately 200 pS in symmetric 100 mM KCl. They are activated by elevation of internal Ca2+ levels and membrane depolarization. The properties of these channels could account for the previously observed voltage and Ca2+ sensitivities of the macroscopic apical membrane conductance (Ga). Ga was determined as a function of apical membrane voltage, using intracellular microelectrode techniques. Its value was 180 microS/cm2 at the control membrane voltage of -68 mV, and increased steeply with membrane depolarization, reaching 650 microS/cm2 at -25 mV. We have related maxi K+ channel properties and Ga quantitatively, relying on the premise that at any apical membrane voltage Ga comprises a leakage conductance and a conductance due to maxi K+ channels. Comparison between Ga and maxi K+ channels reveals that the latter are present at a surface density of 0.09/microns 2, are open approximately 15% of the time under control conditions, and account for 17% of control Ga. Depolarizing the apical membrane voltage leads to a steep increase in channel steady-state open probability. When correlated with patch-clamp studies examining the Ca2+ and voltage dependencies of single maxi K+ channels, results from intracellular microelectrode experiments indicate that maxi K+ channel activity in situ is higher than predicted from the measured apical membrane voltage and estimated bulk cytosolic Ca2+ activity. Mechanisms that could account for this finding are proposed.


1980 ◽  
Vol 76 (1) ◽  
pp. 33-52 ◽  
Author(s):  
L Reuss ◽  
S A Weinman ◽  
T P Grady

A study of the mechanisms of the effects of amphotericin B and ouabain on cell membrane and transepithelial potentials and intracellular K activity (alpha Ki) of Necturus gallbladder epithelium was undertaken with conventional and K-selective intracellular microelectrode techniques. Amphotericin B produced a mucosa-negative change of transepithelial potential (Vms) and depolarization of both apical and basolateral membranes. Rapid fall of alpha Ki was also observed, with the consequent reduction of the K equilibrium potential (EK) across both the apical and the basolateral membrane. It was also shown that, unless the mucosal bathing medium is rapidly exchanged, K accumulates in the unstirred fluid layers near the luminal membrane generating a paracellular K diffusion potential, which contributes to the Vms change. Exposure to ouabain resulted in a slow decrease of alpha Ki and slow depolarization of both cell membranes. Cell membrane potentials and alpha Ki could be partially restored by a brief (3-4 min) mucosal substitution of K for Na. Under all experimental conditions (control, amphotericin B, and ouabain), EK at the basolateral membrane was larger than the basolateral membrane equivalent emf (Eb). Therefore, the K chemical potential difference appears to account for Eb and the magnitude of the cell membrane potentials, without the need to postulate an electrogenic Na pump. Comparison of the rate of Na transport across the tissue with the electrodiffusional K flux across the basolateral membrane indicates that maintenance of a steady-state alpha Ki cannot be explained by a simple Na,K pump-K leak model. It is suggested that either a NaCl pump operates in parallel with the Na,K pump, or that a KCl downhill neutral extrusion mechanism exists in addition to the electrodiffusional K pathway.


1985 ◽  
Vol 85 (3) ◽  
pp. 409-429 ◽  
Author(s):  
L Reuss ◽  
K U Petersen

The effects of elevating intracellular cAMP levels on Na+ transport across the apical membrane of Necturus gallbladder epithelium were studied by intracellular and extracellular microelectrode techniques. Intracellular cAMP was raised by serosal addition of the phosphodiesterase inhibitor theophylline (3 mM) or mucosal addition of either 8-Br-cAMP (1 mM) or the adenylate cyclase activator forskolin (10 microM). During elevation of intracellular cAMP, intracellular Na+ activity (alpha Nai) and intracellular pH (pHi) decreased significantly. In addition, acidification of the mucosal solution, which contained either 100 or 10 mM Na+, was inhibited by approximately 50%. The inhibition was independent of the presence of Cl- in the bathing media. The rates of change of alpha Nai upon rapid alterations of mucosal [Na+] from 100 to 10 mM and from 10 to 100 mM were both decreased, and the rate of pHi recovery upon acid loading was also reduced by elevated cAMP levels. Inhibition was approximately 50% for all of these processes. These results indicate that cAMP inhibits apical membrane Na+/H+ exchange. The results of measurements of pHi recovery at 10 and 100 mM mucosal [Na+] and a kinetic analysis of recovery as a function of pHi suggest that the main or sole mechanism of the inhibitory effect of cAMP is a reduction in the maximal rate of acid extrusion. In conjunction with the increase in apical membrane electrodiffusional Cl- permeability, produced by cAMP, which causes a decrease in net Cl- entry (Petersen, K.-U., and L. Reuss, 1983, J. Gen. Physiol., 81:705), inhibition of Na+/H+ exchange contributes to the reduction of fluid absorption elicited by this agent. Similar mechanisms may account for the effects of cAMP in other epithelia with similar transport properties. It is also possible that inhibition of Na+/H+ exchange by cAMP plays a role in the regulation of pHi in other cell types.


1992 ◽  
Vol 263 (1) ◽  
pp. C187-C193 ◽  
Author(s):  
J. L. Garvin ◽  
K. R. Spring

Na and Cl movement through the apical membrane of Necturus gallbladder epithelium was investigated using electrophysiological and light microscopic measurements. Changes in membrane potential difference, fractional resistance of the apical membrane, and transepithelial resistance caused by changes in apical bath Cl concentration revealed the presence of a Cl conductance in the apical membrane of control tissues that was apparently not present in the preparations studied by other investigators. This Cl conductance was blocked by bumetanide (10(-5) M) or by the inhibitor of adenosine 3',5'-cyclic monophosphate (cAMP) action, the Rp isomer of adenosine 3',5'-cyclic monophosphorothioate (Rp-cAMPS; 0.5 mM). Treatment of the tissues with Rp-cAMPS also eliminated bumetanide-sensitive cell swelling in the presence of ouabain and activated an amiloride-sensitive swelling, changes consistent with inhibition of NaCl cotransport and the activation of Na-H and Cl-HCO3 exchange. We conclude that the mode of NaCl entry into Necturus gallbladder epithelial cells is determined by the level of cAMP. When cAMP levels are high, entry occurs by NaCl cotransport; when cAMP levels are low, parallel exchange of Na-H and Cl-HCO3 predominates. These observations explain the previous disagreements about the mode of NaCl entry into Necturus gallbladder epithelial cells.


Sign in / Sign up

Export Citation Format

Share Document