Local Synaptic Rules with Maximal Information Storage Capacity

Author(s):  
G. Palm
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jung Min Lee ◽  
Mo Beom Koo ◽  
Seul Woo Lee ◽  
Heelim Lee ◽  
Junho Kwon ◽  
...  

AbstractSynthesis of a polymer composed of a large discrete number of chemically distinct monomers in an absolutely defined aperiodic sequence remains a challenge in polymer chemistry. The synthesis has largely been limited to oligomers having a limited number of repeating units due to the difficulties associated with the step-by-step addition of individual monomers to achieve high molecular weights. Here we report the copolymers of α-hydroxy acids, poly(phenyllactic-co-lactic acid) (PcL) built via the cross-convergent method from four dyads of monomers as constituent units. Our proposed method allows scalable synthesis of sequence-defined PcL in a minimal number of coupling steps from reagents in stoichiometric amounts. Digital information can be stored in an aperiodic sequence of PcL, which can be fully retrieved as binary code by mass spectrometry sequencing. The information storage density (bit/Da) of PcL is 50% higher than DNA, and the storage capacity of PcL can also be increased by adjusting the molecular weight (~38 kDa).


2021 ◽  
Vol 118 (45) ◽  
pp. e2024890118
Author(s):  
Shu Ho ◽  
Rebecca Lajaunie ◽  
Marion Lerat ◽  
Mickaël Le ◽  
Valérie Crépel ◽  
...  

Cerebellar Purkinje neurons integrate information transmitted at excitatory synapses formed by granule cells. Although these synapses are considered essential sites for learning, most of them appear not to transmit any detectable electrical information and have been defined as silent. It has been proposed that silent synapses are required to maximize information storage capacity and ensure its reliability, and hence to optimize cerebellar operation. Such optimization is expected to occur once the cerebellar circuitry is in place, during its maturation and the natural and steady improvement of animal agility. We therefore investigated whether the proportion of silent synapses varies over this period, from the third to the sixth postnatal week in mice. Selective expression of a calcium indicator in granule cells enabled quantitative mapping of presynaptic activity, while postsynaptic responses were recorded by patch clamp in acute slices. Through this approach and the assessment of two anatomical features (the distance that separates adjacent planar Purkinje dendritic trees and the synapse density), we determined the average excitatory postsynaptic potential per synapse. Its value was four to eight times smaller than responses from paired recorded detectable connections, consistent with over 70% of synapses being silent. These figures remained remarkably stable across maturation stages. According to the proposed role for silent synapses, our results suggest that information storage capacity and reliability are optimized early during cerebellar maturation. Alternatively, silent synapses may have roles other than adjusting the information storage capacity and reliability.


2002 ◽  
Vol 44-46 ◽  
pp. 661-665 ◽  
Author(s):  
Armen Stepanyants ◽  
Patrick R Hof ◽  
Dmitri B Chklovskii

2018 ◽  
Vol 115 (10) ◽  
pp. E2410-E2418 ◽  
Author(s):  
Cailey Bromer ◽  
Thomas M. Bartol ◽  
Jared B. Bowden ◽  
Dusten D. Hubbard ◽  
Dakota C. Hanka ◽  
...  

An approach combining signal detection theory and precise 3D reconstructions from serial section electron microscopy (3DEM) was used to investigate synaptic plasticity and information storage capacity at medial perforant path synapses in adult hippocampal dentate gyrus in vivo. Induction of long-term potentiation (LTP) markedly increased the frequencies of both small and large spines measured 30 minutes later. This bidirectional expansion resulted in heterosynaptic counterbalancing of total synaptic area per unit length of granule cell dendrite. Control hemispheres exhibited 6.5 distinct spine sizes for 2.7 bits of storage capacity while LTP resulted in 12.9 distinct spine sizes (3.7 bits). In contrast, control hippocampal CA1 synapses exhibited 4.7 bits with much greater synaptic precision than either control or potentiated dentate gyrus synapses. Thus, synaptic plasticity altered total capacity, yet hippocampal subregions differed dramatically in their synaptic information storage capacity, reflecting their diverse functions and activation histories.


2013 ◽  
Vol 338 ◽  
pp. 134-166 ◽  
Author(s):  
Beni Yoshida

1992 ◽  
Vol 4 (5) ◽  
pp. 703-711 ◽  
Author(s):  
Günther Palm

A simple relation between the storage capacity A for autoassociation and H for heteroassociation with a local learning rule is demonstrated: H = 2A. Both values are bounded by local learning bounds: A ≤ LA and H ≤ LH. LH = 2LA is evaluated numerically.


1984 ◽  
Vol 9 (5) ◽  
pp. 209-215 ◽  
Author(s):  
Jean Ledieu

The accelerated growth of information and the rapid devel opment of digital coding techniques have given rise to a new need for greater information storage. This has led to the expansion of the peripheral storage market which today represents one of the fastest growing sectors of the electronics industry. The rise of commercial optical technology is creating dramatic increases in information storage capacity, particularly m the area of graphics storage. This technology is presently being introduced to the high-end and midrange drives market but will be expanded to low-end and mass-storage systems production (i.e., 'juke boxes') as early as 1985.


Sign in / Sign up

Export Citation Format

Share Document