The Skyrme—Hartree—Fock Model of the Nuclear Ground State

Author(s):  
P.-G. Reinhard
2019 ◽  
Vol 17 (42) ◽  
pp. 1-12
Author(s):  
Ali Ahmed Abdulhasan

     The nuclear ground-state structure of some Nickel (58-66Ni) isotopes has been investigated within the framework of the mean field approach using the self-consist Hartree-Fock calculations (HF) including the effective interactions of Skyrme. The Skyrme parameterizations SKM, SKM*, SI, SIII, SKO, SKE, SLY4, SKxs15, SKxs20 and SKxs25 have been utilized with HF method to study the nuclear ground state charge, mass, neutron and proton densities with the corresponding root mean square radii, charge form factors, binding energies and neutron skin thickness. The deduced results led to specifying one set or more of Skyrme parameterizations that used to achieve the best agreement with the available experimental data.


1981 ◽  
Vol 36 (3) ◽  
pp. 272-275 ◽  
Author(s):  
Subal Chandra Saha ◽  
Sankar Sengupta

It is possible to reproduce the entire results of Pekeris et al. of different atomic parameters for the He atom by introducing (ll) type correlation in a self consistent variation perturbation procedure using the Hartree-Fock (HF) wavefunction as the zero-order wavefunction


2007 ◽  
Vol 21 (13n14) ◽  
pp. 2204-2214 ◽  
Author(s):  
BEATE PAULUS

The method of increments is a wavefunction-based ab initio correlation method for solids, which explicitly calculates the many-body wavefunction of the system. After a Hartree-Fock treatment of the infinite system the correlation energy of the solid is expanded in terms of localised orbitals or of a group of localised orbitals. The method of increments has been applied to a great variety of materials with a band gap, but in this paper the extension to metals is described. The application to solid mercury is presented, where we achieve very good agreement of the calculated ground-state properties with the experimental data.


2012 ◽  
Vol 53 (9) ◽  
pp. 095220 ◽  
Author(s):  
Christian Hainzl ◽  
Mathieu Lewin ◽  
Christof Sparber

1998 ◽  
Vol 53 (9) ◽  
pp. 755-765
Author(s):  
Christian Kollma ◽  
Sighart F. Fischer ◽  
Michael C. Böhm

AbstractThe origin of the displacement of the Fe atom in deoxymyoglobin with respect to the porphyrin plane in the high-spin state is examined by a qualitative molecular orbital (MO) analysis on the extended Hückel level. We find that attachment of a fifth ligand (imidazole in our model complex) to Fe(II)porphyrin favors the out-of-plane shift due to a strengthening of the bonding interaction between Fe and the nitrogen of the imidazole ligand. This results in a high-spin (5 = 2) ground state with Fe shifted out-of-plane for the five-coordinate complex instead of an intermediate spin ground state (5 = 1) with Fe lying in the plane for four-coordinate Fe(II)porphyrin. The relative energies of the different spin states as a function of the distance between Fe and the porphyrin plane are evaluated using an ROHF (restricted open shell Hartree-Fock) version of an INDO (intermediate neglect of differential overlap) method. We observe a level crossing between high-spin and intermediate spin states whereas the low-spin (5 = 0) state remains always higher in energy.


Sign in / Sign up

Export Citation Format

Share Document