Secretion and Bulk Flow of Interstitial Fluid

Author(s):  
H. F. Cserr ◽  
C. S. Patlak
Keyword(s):  
2016 ◽  
Vol 21 (2) ◽  
pp. 28-37
Author(s):  
Oscar Solís-Salgado ◽  
José Luis López-Payares ◽  
Mauricio Ayala-González

Las vías de drenaje solutos del sistema nervioso central (SNC) participan en el recambio de liquido intersticial con el líquido cefalorraquídeo (LIT-LCR), generando un estado de homeostasis. Las alteraciones dentro de este sistema homeostático afectará la eliminación de solutos del espacio intersticial (EIT) como el péptido βa y proteína tau, los cuales son sustancias neurotóxicas para el SNC. Se han utilizado técnicas experimentales para poder analizar el intercambio LIT-LCR, las cuales revelan que este intercambio tiene una estructura bien organizada. La eliminación de solutos del SNC no tiene una estructura anatómica propiamente, se han descubierto vías de eliminación de solutos a través de marcadores florecentes en el espacio subaracnoideo, cisternas de la base y sistema ventricular que nos permiten observar una serie de vías ampliamente distribuidas en el cerebro. El LCR muestra que tiene una función linfática debido a su recambio con el LIT a lo largo de rutas paravasculares. Estos espacios que rodean la superficie arterial así como los espacios de Virchow-Robin y el pie astrocitico junto con la AQP-4, facilitan la entrada de LCR para-arterial y el aclaramiento de LIT para-venoso dentro del cerebro. El flujo y dirección que toma el LCR por estas estructuras, es conducido por la pulsación arterial. Esta función será la que finalmente llevara a la eliminación de estas sustancias neurotóxicas. En base a la dependencia de este flujo para la eliminación de sustancias se propone que el sistema sea llamado “ la Vía Glinfática”. La bibliografía así como las limitaciones que se encuentran en esta revisión están dadas por la metodología de búsqueda que ha sido realizada principalmente en PubMed utilizando los siguientes términos Mesh: Cerebral Arterial Pulsation, the brain via paravascular, drainage of amyloid-beta, bulk flow of brain interstitial fluid, radiolabeled polyethylene glycols and albumin, amyloid-β, the perivascular astroglial sheath, Brain Glymphatic Transport.


1981 ◽  
Vol 240 (4) ◽  
pp. F329-F336 ◽  
Author(s):  
M. W. Bradbury ◽  
H. F. Cserr ◽  
R. J. Westrop

Lymph from the jugular lymph trunks of anesthetized rabbits has been continuously collected and radioiodinated albumin (RISA) therein estimated after microinjection of 1 microliter of 131I-albumin into the caudate nucleus, after single intraventricular injections, and during intraventricular infusions. Comparison of lymph at 7 and 25 h after intracerebral microinjection with efflux of radioactivity from whole brain suggests that about 50% of cleared radioactivity goes through lymph. Concentrations, normalized to cerebrospinal fluid (CSF), were much higher in lymph and retropharyngeal nodes after brain injection than after CSF injection or infusion. Also after brain injection, lymph and nodes contained more activity on injected side in contrast to lack of laterality after CSF administration. Calculation suggests that less than 30% of RISA cleared from brain can do so via a pool of well-mixed CSF. Analysis of tissues is compatible with much RISA draining by bulk flow via cerebral perivascular spaces plus passage from subarachnoid space of olfactory lobes into submucous spaces of nose and thus to lymph.


1977 ◽  
Vol 42 (2) ◽  
pp. 144-149 ◽  
Author(s):  
M. H. Gee ◽  
N. C. Staub

In five anesthetized, closed-thorax dogs, we measured net tracer albumin (RISA) uptake rate from an isosmotic buffer-filled lung lobe for 6 h; 3 h at each of two different alveolar RISA concentrations. We calculated the permeability coefficient assuming a two-compartment (alveolar fluid and plasma) diffusional model. In every dog the permeability coefficient decreased after the alveolar RISA concentration was increased. After freezing the lungs terminally, we found the fluid-filled lobes had extensive free interstitial fluid perivascular cuffs, indicating a third compartment filled by bulk flow. In separate experiments, we filled isolated lung lobes with buffer containing RISA and microsampled free interstitial fluid. The free interstitial fluid RISA concentration averaged 90% of airway concentration. The interstitium appears to fill by bulk flow through low-resistance channels. Tracer protein uptake from a fluid-filled lung lobe involves three fluid compartments. We postulate fluid and protein enter the interstitium by bulk flow along a hydrostatic pressure gradient, and protein then diffuses into plasma from the interstitium.


1980 ◽  
Vol 238 (1) ◽  
pp. F42-F49 ◽  
Author(s):  
G. A. Rosenberg ◽  
W. T. Kyner ◽  
E. Estrada

Although bulk flow of brain interstitial fluid (ISF) occurs with changes in hydrostatic and osmotic pressures, under normal conditions only diffusion of molecules in the ISF has been reported. Extrachoroidal cerebrospinal fluid (CSF) production and intracerebral injection studies, however, provide indirect evidence for the bulk flow of ISF under normal conditions. We studied tissue penetration profiles of an extracellular molecule in gray and white matter after 1-, 2-, 3-, and 4-h ventriculocisternal perfusions. Gray matter apparent diffusion coefficients were similar at different times as expected with diffusion; however, white matter coefficients decreased significantly with time, suggesting bulk flow of ISF. White matter data was reanalyzed for both bulk flow and diffusion; we calculated a diffusion coefficient of 3.00 x 10(-6) cm2/s and a velocity for ISF of 10.5 micrometers/min toward the ventricle. Additional animals were given 20% mannitol (1.5--3 g/kg) intravenously prior to a /-h ventriculocisternal perfusion. Mannitol produced a significant bulk flow of ISF away from the ventricle in gray matter. We estimate that 30% of extrachoroidal CSF production is from flow of ISF in white matter.


2001 ◽  
Vol 21 (3) ◽  
pp. 222-230 ◽  
Author(s):  
Rolf K. Reed ◽  
Ansgar Berg ◽  
Eli-Anne B. Gjerde ◽  
Kristofer Rubin

2014 ◽  
Author(s):  
Robert I McLachlan ◽  
Andrew N Stephens ◽  
Adam Rainczuk ◽  
Caroline Foo ◽  
Mark R Condina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document