Closure of the Dissipation Tensor and the Pressure—Strain Tensor Based on the Two-Point Correlation Equation

1995 ◽  
pp. 33-52 ◽  
Author(s):  
Martin Oberlack
1997 ◽  
Vol 350 ◽  
pp. 351-374 ◽  
Author(s):  
MARTIN OBERLACK

On the basis of the two-point velocity correlation equation a new tensor length-scale equation and in turn a dissipation rate tensor equation and the pressure–strain correlation are derived by means of asymptotic analysis and frame-invariance considerations. The new dissipation rate tensor equation can account for non-isotropy effects of the dissipation rate and streamline curvature. The entire analysis is valid for incompressible as well as for compressible turbulence in the limit of small Mach numbers. The pressure–strain correlation is expressed as a functional of the two-point correlation, leading to an extended compressible version of the linear formulation of the pressure–strain correlation. In this turbulence modelling approach the only terms which still need ad hoc closure assumptions are the triple correlation of the fluctuating velocities and a tensor relation between the length scale and the dissipation rate tensor. Hence, a consistent formulation of the return term in the pressure–strain correlation and the dissipation tensor equation is achieved. The model has been integrated numerically for several different homogeneous and inhomogeneous test cases and results are compared with DNS, LES and experimental data.


2017 ◽  
Vol 45 (1) ◽  
pp. 71-84 ◽  
Author(s):  
Alexey Mazin ◽  
Alexander Kapustin ◽  
Mikhail Soloviev ◽  
Alexander Karanets

ABSTRACT Numerical simulation based on finite element analysis is now widely used during the design optimization of tires, thereby drastically reducing the time investment in the design process and improving tire performance because it is obtained from the optimized solution. Rubber material models that are used in numerical calculations of stress–strain distributions are nonlinear and may include several parameters. The relations of these parameters with rubber formulations are usually unknown, so the designer has no information on whether the optimal set of parameters is reachable by the rubber technological possibilities. The aim of this work was to develop such relations. The most common approach to derive the equation of the state of rubber is based on the expansion of the strain energy in a series of invariants of the strain tensor. Here, we show that this approach has several drawbacks, one of which is problems that arise when trying to build on its basis the quantitative relations between the rubber composition and its properties. An alternative is to use a series expansion in orthogonal functions, thereby ensuring the linear independence of the coefficients of elasticity in evaluation of the experimental data and the possibility of constructing continuous maps of “the composition to the property.” In the case of orthogonal Legendre polynomials, the technique for constructing such maps is considered, and a set of empirical functions is proposed to adequately describe the dependence of the parameters of nonlinear elastic properties of general-purpose rubbers on the content of the main ingredients. The calculated sets of parameters were used in numerical tire simulations including static loading, footprint analysis, braking/acceleration, and cornering and also in design optimization procedures.


1989 ◽  
Vol 54 (1) ◽  
pp. 117-135
Author(s):  
Oldřich Pytela ◽  
Vítězslav Zima

The method of conjugate deviations based on the regression analysis has been suggested for construction of a new nucleophilicity scale. This method has been applied to a set of 28 nucleophiles participating in 47 physical and chemical processes described in literature. The two-parameter nucleophilicity scale obtained represents-in the parameter denoted as ND-the general tendency to form a bond to an electrophile predominantly on the basis of the orbital interaction and-in the parameter denoted as PD-the ability to interact with a centre similar to the proton (basicity). The linear correlation equation involving the ND, PD parameters and the charge appears to be distinctly better than the most significant relations used. The correlation dependences have the physico-chemical meaning. From the position of individual nucleophiles in the space of the ND and PD parameters, some general conclusions have been derived about the factors governing the reactivity of nucleophiles.


1992 ◽  
Vol 57 (9) ◽  
pp. 1879-1887 ◽  
Author(s):  
Zdeněk Palatý

The applicability of the equation derived for calculating the dynamic viscosity of ternary non-electrolyte mixtures, to the correlation of viscosity data of the H2O- K2CO3/KHCO3 system is verified in this work. It was found out that the values of dynamic viscosity obtained experimentally are in good agreement with the viscosity values calculated from this equation. The equation constants - interaction coefficients - were determined from the measurements of dynamic viscosity on mixing the basic solutions of K2CO3 and KHCO3 of known concentration. The correlation equation makes it possible to calculate viscosity of the K2CO3/KHCO3 solutions in the K2CO3 and KHCO3 concentration range from 0 to about 2.0 kmol m-3.


1993 ◽  
Vol 08 (23) ◽  
pp. 4031-4053
Author(s):  
HOVIK D. TOOMASSIAN

The structure of the free field representation and some four-point correlation functions of the SU(3) conformal field theory are considered.


Sign in / Sign up

Export Citation Format

Share Document