Identification and Characterization of Novel ATP-Binding Cassette Proteins in Saccharomyces Cerevisiae

Author(s):  
Jonathan Leighton
1995 ◽  
Vol 270 (30) ◽  
pp. 18150-18157 ◽  
Author(s):  
Anabelle Decottignies ◽  
Laurence Lambert ◽  
Patrice Catty ◽  
Herv Degand ◽  
Eric A. Epping ◽  
...  

1995 ◽  
Vol 15 (12) ◽  
pp. 6875-6883 ◽  
Author(s):  
D J Katzmann ◽  
T C Hallstrom ◽  
M Voet ◽  
W Wysock ◽  
J Golin ◽  
...  

Semidominant mutations in the PDR1 or PDR3 gene lead to elevated resistance to cycloheximide and oligomycin. PDR1 and PDR3 have been demonstrated to encode zinc cluster transcription factors. Cycloheximide resistance mediated by PDR1 and PDR3 requires the presence of the PDR5 membrane transporter-encoding gene. However, PDR5 is not required for oligomycin resistance. Here, we isolated a gene that is necessary for PDR1- and PDR3-mediated oligomycin resistance. This locus, designated YOR1, causes a dramatic elevation in oligomycin resistance when present in multiple copies. A yor1 strain exhibits oligomycin hypersensitivity relative to an isogenic wild-type strain. In addition, loss of the YOR1 gene blocks the elevation in oligomycin resistance normally conferred by mutant forms of PDR1 or PDR3. The YOR1 gene product is predicted to be a member of the ATP-binding cassette transporter family of membrane proteins. Computer alignment indicates that Yor1p shows striking sequence similarity with multidrug resistance-associated protein, Saccharomyces cerevisiae Ycf1p, and the cystic fibrosis transmembrane conductance regulator. Use of a YOR1-lacZ fusion gene indicates that YOR1 expression is responsive to PDR1 and PDR3. While PDR5 expression is strictly dependent on the presence of PDR1 or PDR3, control of YOR1 expression has a significant PDR1/PDR3-independent component. Taken together, these data indicate that YOR1 provides the link between transcriptional regulation by PDR1 and PDR3 and oligomycin resistance of yeast cells.


Genetics ◽  
1987 ◽  
Vol 116 (4) ◽  
pp. 523-530
Author(s):  
Aileen K W Taguchi ◽  
Elton T Young

ABSTRACT The alcohol dehydrogenase II isozyme (enzyme, ADHII; structural gene, ADH2) of the yeast, Saccharomyces cerevisiae, is under stringent carbon catabolite control. This cytoplasmic isozyme exhibits negligible activity during growth in media containing fermentable carbon sources such as glucose and is maximal during growth on nonfermentable carbon sources. A recessive mutation, adr6-1, and possibly two other alleles at this locus, were selected for their ability to decrease Ty-activated ADH2-6 c expression. The adr6-1 mutation led to decreased ADHII activity in both ADH2-6c and ADH2+ strains, and to decreased levels of ADH2 mRNA. Ty transcription and the expression of two other carbon catabolite regulated enzymes, isocitrate lyase and malate dehydrogenase, were unaffected by the adr6-1 mutation. adr6-1/adr6-1strains were defective for sporulation, indicating that adr6 mutations may have pleiotropic effects. The sporulation defect was not a consequence of decreased ADH activity. Since the ADH2-6c mutation is due to insertion of a 5.6-kb Ty element at the TATAA box, it appears that the ADR6+-dependent ADHII activity required ADH2 sequences 3′ to or including the TATAA box. The ADH2 upstream activating sequence (UAS) was probably not required. The ADR6 locus was unlinked to the ADR1 gene which encodes another trans-acting element required for ADH2 expression.


2009 ◽  
Vol 32 (3) ◽  
pp. 497-499 ◽  
Author(s):  
Márton Jani ◽  
Pál Szabó ◽  
Emese Kis ◽  
Éva Molnár ◽  
Hristos Glavinas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document